Sequential Approximate Multiobjective Optimization Using Computational Intelligence

This book highlights a new direction of multiobjective optimzation, which has never been treated in previous publications. When the function form of objective functions is not known explicitly as encountered in many practical problems, sequential approximate optimization based on metamodels is an ef...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yoon, Min (Συγγραφέας), Yun, Yeboon (Συγγραφέας), Nakayama, Hirotaka (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Vector Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:This book highlights a new direction of multiobjective optimzation, which has never been treated in previous publications. When the function form of objective functions is not known explicitly as encountered in many practical problems, sequential approximate optimization based on metamodels is an effective tool from a practical viewpoint. Several sophisticated methods for sequential approximate multiobjective optimization using computational intelligence are introduced along with real applications, mainly engineering problems, in this book.
Φυσική περιγραφή:XVI, 200 p. 111 illus. online resource.
ISBN:9783540889106
ISSN:1867-8971