Modules over Operads and Functors

The notion of an operad supplies both a conceptual and effective device to handle a variety of algebraic structures in various situations. Operads were introduced 40 years ago in algebraic topology in order to model the structure of iterated loop spaces. Since then, operads have been used fruitfully...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fresse, Benoit (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1967
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03317nam a22005055i 4500
001 978-3-540-89056-0
003 DE-He213
005 20151204150829.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540890560  |9 978-3-540-89056-0 
024 7 |a 10.1007/978-3-540-89056-0  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Fresse, Benoit.  |e author. 
245 1 0 |a Modules over Operads and Functors  |h [electronic resource] /  |c by Benoit Fresse. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a X, 314 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1967 
505 0 |a Categorical and operadic background -- Symmetric monoidal categories for operads -- Symmetric objects and functors -- Operads and algebras in symmetric monoidal categories -- Miscellaneous structures associated to algebras over operads -- The category of right modules over operads and functors -- Definitions and basic constructions -- Tensor products -- Universal constructions on right modules over operads -- Adjunction and embedding properties -- Algebras in right modules over operads -- Miscellaneous examples -- Homotopical background -- Symmetric monoidal model categories for operads -- The homotopy of algebras over operads -- The (co)homology of algebras over operads -- The homotopy of modules over operads and functors -- The model category of right modules -- Modules and homotopy invariance of functors -- Extension and restriction functors and model structures -- Miscellaneous applications -- Appendix: technical verifications -- Shifted modules over operads and functors -- Shifted functors and pushout-products -- Applications of pushout-products of shifted functors. 
520 |a The notion of an operad supplies both a conceptual and effective device to handle a variety of algebraic structures in various situations. Operads were introduced 40 years ago in algebraic topology in order to model the structure of iterated loop spaces. Since then, operads have been used fruitfully in many fields of mathematics and physics. This monograph begins with a review of the basis of operad theory. The main purpose is to study structures of modules over operads as a new device to model functors between categories of algebras as effectively as operads model categories of algebras. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540890553 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1967 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-89056-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)