A Generative Theory of Relevance

A modern information retrieval system must have the capability to find, organize and present very different manifestations of information – such as text, pictures, videos or database records – any of which may be of relevance to the user. However, the concept of relevance, while seemingly intuitive,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lavrenko, Victor (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:The Information Retrieval Series, 26
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03275nam a22004935i 4500
001 978-3-540-89364-6
003 DE-He213
005 20151030031320.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540893646  |9 978-3-540-89364-6 
024 7 |a 10.1007/978-3-540-89364-6  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
082 0 4 |a 025.04  |2 23 
100 1 |a Lavrenko, Victor.  |e author. 
245 1 2 |a A Generative Theory of Relevance  |h [electronic resource] /  |c by Victor Lavrenko. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XX, 197 p. 31 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Information Retrieval Series,  |x 1387-5264 ;  |v 26 
505 0 |a Relevance -- A Generative View of Relevance -- Generative Density Allocation -- Retrieval Scenarios -- Conclusion. 
520 |a A modern information retrieval system must have the capability to find, organize and present very different manifestations of information – such as text, pictures, videos or database records – any of which may be of relevance to the user. However, the concept of relevance, while seemingly intuitive, is actually hard to define, and it's even harder to model in a formal way. Lavrenko does not attempt to bring forth a new definition of relevance, nor provide arguments as to why any particular definition might be theoretically superior or more complete. Instead, he takes a widely accepted, albeit somewhat conservative definition, makes several assumptions, and from them develops a new probabilistic model that explicitly captures that notion of relevance. With this book, he makes two major contributions to the field of information retrieval: first, a new way to look at topical relevance, complementing the two dominant models, i.e., the classical probabilistic model and the language modeling approach, and which explicitly combines documents, queries, and relevance in a single formalism; second, a new method for modeling exchangeable sequences of discrete random variables which does not make any structural assumptions about the data and which can also handle rare events. Thus his book is of major interest to researchers and graduate students in information retrieval who specialize in relevance modeling, ranking algorithms, and language modeling. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Mathematical statistics. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540893639 
830 0 |a The Information Retrieval Series,  |x 1387-5264 ;  |v 26 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-89364-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)