Noncommutative Spacetimes Symmetries in Noncommutative Geometry and Field Theory /

There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Aschieri, Paolo (Συγγραφέας), Dimitrijevic, Marija (Συγγραφέας), Kulish, Petr (Συγγραφέας), Lizzi, Fedele (Συγγραφέας), Wess, Julius (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Physics, 774
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03199nam a22005295i 4500
001 978-3-540-89793-4
003 DE-He213
005 20151108121049.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540897934  |9 978-3-540-89793-4 
024 7 |a 10.1007/978-3-540-89793-4  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Aschieri, Paolo.  |e author. 
245 1 0 |a Noncommutative Spacetimes  |h [electronic resource] :  |b Symmetries in Noncommutative Geometry and Field Theory /  |c by Paolo Aschieri, Marija Dimitrijevic, Petr Kulish, Fedele Lizzi, Julius Wess. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XIV, 199 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 774 
505 0 |a Deformed Field Theory: Physical Aspects -- Differential Calculus and Gauge Transformations on a Deformed Space -- Deformed Gauge Theories -- Einstein Gravity on Deformed Spaces -- Deformed Gauge Theory: Twist Versus Seiberg#x2013;Witten Approach -- Another Example of Noncommutative Spaces: #x03BA;-Deformed Space -- Noncommutative Geometries: Foundations and Applications -- Noncommutative Spaces -- Quantum Groups, Quantum Lie Algebras, and Twists -- Noncommutative Symmetries and Gravity -- Twist Deformations of Quantum Integrable Spin Chains -- The Noncommutative Geometry of Julius Wess. 
520 |a There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field. 
650 0 |a Physics. 
650 0 |a Group theory. 
650 0 |a Quantum physics. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Quantum Physics. 
700 1 |a Dimitrijevic, Marija.  |e author. 
700 1 |a Kulish, Petr.  |e author. 
700 1 |a Lizzi, Fedele.  |e author. 
700 1 |a Wess, Julius.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540897927 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 774 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-89793-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)