Fuzzy Preference Ordering of Interval Numbers in Decision Problems

In conventional mathematical programming, coefficients of problems are usually determined by the experts as crisp values in terms of classical mathematical reasoning. But in reality, in an imprecise and uncertain environment, it will be utmost unrealistic to assume that the knowledge and representat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sengupta, Atanu (Συγγραφέας), Pal, Tapan Kumar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Fuzziness and Soft Computing, 238
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03608nam a22004935i 4500
001 978-3-540-89915-0
003 DE-He213
005 20151204142902.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540899150  |9 978-3-540-89915-0 
024 7 |a 10.1007/978-3-540-89915-0  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Sengupta, Atanu.  |e author. 
245 1 0 |a Fuzzy Preference Ordering of Interval Numbers in Decision Problems  |h [electronic resource] /  |c by Atanu Sengupta, Tapan Kumar Pal. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XII, 166 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 238 
505 0 |a On Comparing Interval Numbers: A Study on Existing Ideas -- Acceptability Index and Interval Linear Programming -- Fuzzy Preference Ordering of Intervals -- Solving the Shortest Path Problem with Interval Arcs -- Travelling Salesman Problem with Interval Cost Constraints -- Interval Transportation Problem with Multiple Penalty Factors -- Fuzzy Preference based TOPSIS for Interval Multi-criteria Decision Making -- Concluding Remarks and the Future Scope. 
520 |a In conventional mathematical programming, coefficients of problems are usually determined by the experts as crisp values in terms of classical mathematical reasoning. But in reality, in an imprecise and uncertain environment, it will be utmost unrealistic to assume that the knowledge and representation of an expert can come in a precise way. The wider objective of the book is to study different real decision situations where problems are defined in inexact environment. Inexactness are mainly generated in two ways – (1) due to imprecise perception and knowledge of the human expert followed by vague representation of knowledge as a DM; (2) due to huge-ness and complexity of relations and data structure in the definition of the problem situation. We use interval numbers to specify inexact or imprecise or uncertain data. Consequently, the study of a decision problem requires answering the following initial questions – How should we compare and define preference ordering between two intervals? interpret and deal inequality relations involving interval coefficients? interpret and make way towards the goal of the decision problem? The present research work consists of two closely related fields: approaches towards defining a generalized preference ordering scheme for interval attributes and approaches to deal with some issues having application potential in many areas of decision making. 
650 0 |a Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Pal, Tapan Kumar.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540899143 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 238 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-89915-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)