Fuzzy Systems in Bioinformatics and Computational Biology

Biological systems are inherently stochastic and uncertain. Thus, research in bioinformatics, biomedical engineering and computational biology has to deal with a large amount of uncertainties. Fuzzy logic has shown to be a powerful tool in capturing different uncertainties in engineering systems. In...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Jin, Yaochu (Επιμελητής έκδοσης), Wang, Lipo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Fuzziness and Soft Computing, 242
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04420nam a22005055i 4500
001 978-3-540-89968-6
003 DE-He213
005 20151204171922.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540899686  |9 978-3-540-89968-6 
024 7 |a 10.1007/978-3-540-89968-6  |2 doi 
040 |d GrThAP 
050 4 |a TA345-345.5 
072 7 |a UGC  |2 bicssc 
072 7 |a COM007000  |2 bisacsh 
082 0 4 |a 620.00420285  |2 23 
245 1 0 |a Fuzzy Systems in Bioinformatics and Computational Biology  |h [electronic resource] /  |c edited by Yaochu Jin, Lipo Wang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XVI, 332 p. 118 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 242 
505 0 |a Induction of Fuzzy Rules by Means of Artificial Immune Systems in Bioinformatics -- Fuzzy Genome Sequence Assembly for Single and Environmental Genomes -- A Hybrid Promoter Analysis Methodology for Prokaryotic Genomes -- Fuzzy Vector Filters for cDNA Microarray Image Processing -- Microarray Data Analysis Using Fuzzy Clustering Algorithms -- Fuzzy Patterns and GCS Networks to Clustering Gene Expression Data -- Gene Expression Analysis by Fuzzy and Hybrid Fuzzy Classification -- Detecting Gene Regulatory Networks from Microarray Data Using Fuzzy Logic -- Fuzzy System Methods in Modeling Gene Expression and Analyzing Protein Networks -- Evolving a Fuzzy Rulebase to Model Gene Expression -- Infer Genetic/Transcriptional Regulatory Networks by Recognition of Microarray Gene Expression Patterns Using Adaptive Neuro-Fuzzy Inference Systems -- Scalable Dynamic Fuzzy Biomolecular Network Models for Large Scale Biology -- Fuzzy C-Means Techniques for Medical Image Segmentation -- Monitoring and Control of Anesthesia Using Multivariable Self-Organizing Fuzzy Logic Structure -- Interval Type-2 Fuzzy System for ECG Arrhythmic Classification -- Fuzzy Logic in Evolving in silico Oscillatory Dynamics for Gene Regulatory Networks. 
520 |a Biological systems are inherently stochastic and uncertain. Thus, research in bioinformatics, biomedical engineering and computational biology has to deal with a large amount of uncertainties. Fuzzy logic has shown to be a powerful tool in capturing different uncertainties in engineering systems. In recent years, fuzzy logic based modeling and analysis approaches are also becoming popular in analyzing biological data and modeling biological systems. Numerous research and application results have been reported that demonstrated the effectiveness of fuzzy logic in solving a wide range of biological problems found in bioinformatics, biomedical engineering, and computational biology. Contributed by leading experts world-wide, this edited book contains 16 chapters presenting representative research results on the application of fuzzy systems to genome sequence assembly, gene expression analysis, promoter analysis, cis-regulation logic analysis and synthesis, reconstruction of genetic and cellular networks, as well as biomedical problems, such as medical image processing, electrocardiogram data classification and anesthesia monitoring and control. This volume is a valuable reference for researchers, practitioners, as well as graduate students working in the field of bioinformstics, biomedical engineering and computational biology. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer-aided engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Jin, Yaochu.  |e editor. 
700 1 |a Wang, Lipo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540899679 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 242 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-89968-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)