Evolutionary Multi-objective Optimization in Uncertain Environments Issues and Algorithms /

Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Goh, Chi-Keong (Συγγραφέας), Tan, Kay Chen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 186
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • I: Evolving Solution Sets in the Presence of Noise
  • Noisy Evolutionary Multi-objective Optimization
  • Handling Noise in Evolutionary Multi-objective Optimization
  • Handling Noise in Evolutionary Neural Network Design
  • II: Tracking Dynamic Multi-objective Landscapes
  • Dynamic Evolutionary Multi-objective Optimization
  • A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization
  • III: Evolving Robust Solution Sets
  • Robust Evolutionary Multi-objective Optimization
  • Evolving Robust Solutions in Multi-Objective Optimization
  • Evolving Robust Routes
  • Final Thoughts.