Evolutionary Multi-objective Optimization in Uncertain Environments Issues and Algorithms /
Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algo...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2009.
|
Σειρά: | Studies in Computational Intelligence,
186 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- I: Evolving Solution Sets in the Presence of Noise
- Noisy Evolutionary Multi-objective Optimization
- Handling Noise in Evolutionary Multi-objective Optimization
- Handling Noise in Evolutionary Neural Network Design
- II: Tracking Dynamic Multi-objective Landscapes
- Dynamic Evolutionary Multi-objective Optimization
- A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization
- III: Evolving Robust Solution Sets
- Robust Evolutionary Multi-objective Optimization
- Evolving Robust Solutions in Multi-Objective Optimization
- Evolving Robust Routes
- Final Thoughts.