Partial Differential Equations and Solitary Waves Theory

"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understan...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wazwaz, Abdul-Majid (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Nonlinear Physical Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03643nam a22005055i 4500
001 978-3-642-00251-9
003 DE-He213
005 20151204184007.0
007 cr nn 008mamaa
008 100528s2009 gw | s |||| 0|eng d
020 |a 9783642002519  |9 978-3-642-00251-9 
024 7 |a 10.1007/978-3-642-00251-9  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Wazwaz, Abdul-Majid.  |e author. 
245 1 0 |a Partial Differential Equations and Solitary Waves Theory  |h [electronic resource] /  |c by Abdul-Majid Wazwaz. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a 700 p. 14 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Nonlinear Physical Science,  |x 1867-8440 
505 0 |a Partial Differential Equations -- Basic Concepts -- First-order Partial Differential Equations -- One Dimensional Heat Flow -- Higher Dimensional Heat Flow -- One Dimensional Wave Equation -- Higher Dimensional Wave Equation -- Laplace’s Equation -- Nonlinear Partial Differential Equations -- Linear and Nonlinear Physical Models -- Numerical Applications and Padé Approximants -- Solitons and Compactons -- Solitray Waves Theory -- Solitary Waves Theory -- The Family of the KdV Equations -- KdV and mKdV Equations of Higher-orders -- Family of KdV-type Equations -- Boussinesq, Klein-Gordon and Liouville Equations -- Burgers, Fisher and Related Equations -- Families of Camassa-Holm and Schrodinger Equations. 
520 |a "Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Engineering, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642002502 
830 0 |a Nonlinear Physical Science,  |x 1867-8440 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-00251-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)