Nature-Inspired Algorithms for Optimisation

Nature-Inspired Algorithms have been gaining much popularity in recent years due to the fact that many real-world optimisation problems have become increasingly large, complex and dynamic. The size and complexity of the problems nowadays require the development of methods and solutions whose efficie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Chiong, Raymond (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 193
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Section I: Introduction
  • Why Is Optimization Difficult?
  • The Rationale Behind Seeking Inspiration from Nature
  • Section II: Evolutionary Intelligence
  • The Evolutionary-Gradient-Search Procedure in Theory and Practice
  • The Evolutionary Transition Algorithm: Evolving Complex Solutions Out of Simpler Ones
  • A Model-Assisted Memetic Algorithm for Expensive Optimization Problems
  • A Self-adaptive Mixed Distribution Based Uni-variate Estimation of Distribution Algorithm for Large Scale Global Optimization
  • Differential Evolution with Fitness Diversity Self-adaptation
  • Central Pattern Generators: Optimisation and Application
  • Section III: Collective Intelligence
  • Fish School Search
  • Magnifier Particle Swarm Optimization
  • Improved Particle Swarm Optimization in Constrained Numerical Search Spaces
  • Applying River Formation Dynamics to Solve NP-Complete Problems
  • Section IV: Social-Natural Intelligence
  • Algorithms Inspired in Social Phenomena
  • Artificial Immune Systems for Optimization
  • Section V: Multi-Objective Optimisation
  • Ranking Methods in Many-Objective Evolutionary Algorithms
  • On the Effect of Applying a Steady-State Selection Scheme in the Multi-Objective Genetic Algorithm NSGA-II
  • Improving the Performance of Multiobjective Evolutionary Optimization Algorithms Using Coevolutionary Learning
  • Evolutionary Optimization for Multiobjective Portfolio Selection under Markowitz’s Model with Application to the Caracas Stock Exchange.