Tuning Metaheuristics A Machine Learning Perspective /

The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuris...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Birattari, Mauro (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 197
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuristics is often considered to be more of an art than a science. This book lays the foundations for a scientific approach to tuning metaheuristics. The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning. By adopting a machine learning perspective, the author gives a formal definition of the tuning problem, develops a generic algorithm for tuning metaheuristics, and defines an appropriate experimental methodology for assessing the performance of metaheuristics.
Φυσική περιγραφή:X, 221 p. online resource.
ISBN:9783642004834
ISSN:1860-949X ;