Tuning Metaheuristics A Machine Learning Perspective /

The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuris...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Birattari, Mauro (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 197
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02751nam a22004815i 4500
001 978-3-642-00483-4
003 DE-He213
005 20151204172121.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642004834  |9 978-3-642-00483-4 
024 7 |a 10.1007/978-3-642-00483-4  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Birattari, Mauro.  |e author. 
245 1 0 |a Tuning Metaheuristics  |h [electronic resource] :  |b A Machine Learning Perspective /  |c by Mauro Birattari. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a X, 221 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 197 
505 0 |a Background and State-of-the-Art -- Statement of the Tuning Problem -- F-Race for Tuning Metaheuristics -- Experiments and Applications -- Some Considerations on the Experimental Methodology -- Conclusions. 
520 |a The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuristics is often considered to be more of an art than a science. This book lays the foundations for a scientific approach to tuning metaheuristics. The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning. By adopting a machine learning perspective, the author gives a formal definition of the tuning problem, develops a generic algorithm for tuning metaheuristics, and defines an appropriate experimental methodology for assessing the performance of metaheuristics. 
650 0 |a Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642004827 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 197 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-00483-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)