Emerging Trends in Visual Computing LIX Fall Colloquium, ETVC 2008, Palaiseau, France, November 18-20, 2008. Revised Invited Papers /

This book is an outcome of the LIX Fall Colloquium on the Emerging Trends in Visual Computing, ETVC 2008, which was held in Palaiseau, France, November 18-20, 2008. During the event, 25 renowned invited speakers gave lectures on their areas of expertise within the field of visual computing. From the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nielsen, Frank (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Σειρά:Lecture Notes in Computer Science, 5416
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Geometric Computing
  • Abstracts of the LIX Fall Colloquium 2008: Emerging Trends in Visual Computing
  • From Segmented Images to Good Quality Meshes Using Delaunay Refinement
  • Information Geometry and Applications
  • Discrete Curvature Flows for Surfaces and 3-Manifolds
  • Information Geometry and Its Applications: Convex Function and Dually Flat Manifold
  • Computational Geometry from the Viewpoint of Affine Differential Geometry
  • Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery
  • Clustering Multivariate Normal Distributions
  • Computer Graphics and Vision
  • Intrinsic Geometries in Learning
  • Shape from Depth Discontinuities
  • Computational Photography: Epsilon to Coded Photography
  • Unifying Subspace and Distance Metric Learning with Bhattacharyya Coefficient for Image Classification
  • Information Retrieval
  • Constant-Working-Space Algorithms for Image Processing
  • Sparse Multiscale Patches for Image Processing
  • Medical Imaging and Computational Anatomy
  • Recent Advances in Large Scale Image Search
  • Information Theoretic Methods for Diffusion-Weighted MRI Analysis
  • Statistical Computing on Manifolds: From Riemannian Geometry to Computational Anatomy.