Foundations of Computational, Intelligence Volume 1 Learning and Approximation /

Learning methods and approximation algorithms are fundamental tools that deal with computationally hard problems and problems in which the input is gradually disclosed over time. Both kinds of problems have a large number of applications arising from a variety of fields, such as algorithmic game the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Hassanien, Aboul-Ella (Επιμελητής έκδοσης), Abraham, Ajith (Επιμελητής έκδοσης), Vasilakos, Athanasios V. (Επιμελητής έκδοσης), Pedrycz, Witold (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 201
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Function Approximation
  • Machine Learning and Genetic Regulatory Networks: A Review and a Roadmap
  • Automatic Approximation of Expensive Functions with Active Learning
  • New Multi-Objective Algorithms for Neural Network Training Applied to Genomic Classification Data
  • An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy
  • Connectionist Learning
  • Meta-learning and Neurocomputing – A New Perspective for Computational Intelligence
  • Three-Term Fuzzy Back-Propagation
  • Entropy Guided Transformation Learning
  • Artificial Development
  • Robust Training of Artificial Feedforward Neural Networks
  • Workload Assignment in Production Networks by Multi Agent Architecture
  • Knowledge Representation and Acquisition
  • Extensions to Knowledge Acquisition and Effect of Multimodal Representation in Unsupervised Learning
  • A New Implementation for Neural Networks in Fourier-Space
  • Learning and Visualization
  • Dissimilarity Analysis and Application to Visual Comparisons
  • Dynamic Self-Organising Maps: Theory, Methods and Applications
  • Hybrid Learning Enhancement of RBF Network with Particle Swarm Optimization.