Foundations of Computational Intelligence Volume 3 Global Optimization /

Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Abraham, Ajith (Επιμελητής έκδοσης), Hassanien, Aboul-Ella (Επιμελητής έκδοσης), Siarry, Patrick (Επιμελητής έκδοσης), Engelbrecht, Andries (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 203
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04995nam a22005295i 4500
001 978-3-642-01085-9
003 DE-He213
005 20151204183038.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642010859  |9 978-3-642-01085-9 
024 7 |a 10.1007/978-3-642-01085-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Foundations of Computational Intelligence Volume 3  |h [electronic resource] :  |b Global Optimization /  |c edited by Ajith Abraham, Aboul-Ella Hassanien, Patrick Siarry, Andries Engelbrecht. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XII, 528 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 203 
505 0 |a Global Optimization Algorithms: Theoretical Foundations and Perspectives -- Genetic Algorithms for the Use in Combinatorial Problems -- Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications -- Global Optimization Using Harmony Search: Theoretical Foundations and Applications -- Hybrid GRASP Heuristics -- Particle Swarm Optimization: Performance Tuning and Empirical Analysis -- Tabu Search to Solve Real-Life Combinatorial Optimization Problems: A Case of Study -- Reformulations in Mathematical Programming: A Computational Approach -- Graph-Based Local Elimination Algorithms in Discrete Optimization -- Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems -- Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning -- Global Optimization Algorithms: Applications -- An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy -- Evolutionary Computing in Statistical Data Analysis -- Meta-heuristics for System Design Engineering -- Transgenetic Algorithm: A New Endosymbiotic Approach for Evolutionary Algorithms -- Multi-objective Team Forming Optimization for Integrated Product Development Projects -- Genetic Algorithms for Task Scheduling Problem -- PSO_Bounds: A New Hybridization Technique of PSO and EDAs. 
520 |a Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Abraham, Ajith.  |e editor. 
700 1 |a Hassanien, Aboul-Ella.  |e editor. 
700 1 |a Siarry, Patrick.  |e editor. 
700 1 |a Engelbrecht, Andries.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642010842 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 203 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-01085-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)