Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics 7th European Conference, EvoBIO 2009 Tübingen, Germany, April 15-17, 2009 Proceedings /

This book constitutes the refereed proceedings of the 7th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2009, held in Tübingen, Germany, in April 2009 colocated with the Evo* 2009 events. The 17 revised full papers were carefully reviewed...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Pizzuti, Clara (Επιμελητής έκδοσης), Ritchie, Marylyn D. (Επιμελητής έκδοσης), Giacobini, Mario (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Computer Science, 5483
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04722nam a22005895i 4500
001 978-3-642-01184-9
003 DE-He213
005 20151030091153.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642011849  |9 978-3-642-01184-9 
024 7 |a 10.1007/978-3-642-01184-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.6-76.66 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
082 0 4 |a 005.11  |2 23 
245 1 0 |a Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics  |h [electronic resource] :  |b 7th European Conference, EvoBIO 2009 Tübingen, Germany, April 15-17, 2009 Proceedings /  |c edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XII, 203 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5483 
505 0 |a Association Study between Gene Expression and Multiple Relevant Phenotypes with Cluster Analysis -- Gaussian Graphical Models to Infer Putative Genes Involved in Nitrogen Catabolite Repression in S. cerevisiae -- Chronic Rat Toxicity Prediction of Chemical Compounds Using Kernel Machines -- Simulating Evolution of Drosophila Melanogaster Ebony Mutants Using a Genetic Algorithm -- Microarray Biclustering: A Novel Memetic Approach Based on the PISA Platform -- F-score with Pareto Front Analysis for Multiclass Gene Selection -- A Hierarchical Classification Ant Colony Algorithm for Predicting Gene Ontology Terms -- Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks -- Optimal Use of Expert Knowledge in Ant Colony Optimization for the Analysis of Epistasis in Human Disease -- On the Efficiency of Local Search Methods for the Molecular Docking Problem -- A Comparison of Genetic Algorithms and Particle Swarm Optimization for Parameter Estimation in Stochastic Biochemical Systems -- Guidelines to Select Machine Learning Scheme for Classification of Biomedical Datasets -- Evolutionary Approaches for Strain Optimization Using Dynamic Models under a Metabolic Engineering Perspective -- Clustering Metagenome Short Reads Using Weighted Proteins -- A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony -- Validation of a Morphogenesis Model of Drosophila Early Development by a Multi-objective Evolutionary Optimization Algorithm -- Refining Genetic Algorithm Based Fuzzy Clustering through Supervised Learning for Unsupervised Cancer Classification. 
520 |a This book constitutes the refereed proceedings of the 7th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2009, held in Tübingen, Germany, in April 2009 colocated with the Evo* 2009 events. The 17 revised full papers were carefully reviewed and selected from 44 submissions. EvoBio is the premiere European event for experts in computer science meeting with experts in bioinformatics and the biological sciences, all interested in the interface between evolutionary computation, machine learning, data mining, bioinformatics, and computational biology. Topics addressed by the papers include biomarker discovery, cell simulation and modeling, ecological modeling, uxomics, gene networks, biotechnology, metabolomics, microarray analysis, phylogenetics, protein interactions, proteomics, sequence analysis and alignment, as well as systems biology. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Bioinformatics. 
650 1 4 |a Computer Science. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Pizzuti, Clara.  |e editor. 
700 1 |a Ritchie, Marylyn D.  |e editor. 
700 1 |a Giacobini, Mario.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642011832 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5483 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-01184-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)