The Dirac Spectrum

This volume surveys the spectral properties of the spin Dirac operator. After a brief introduction to spin geometry, we present the main known estimates for Dirac eigenvalues on compact manifolds with or without boundaries. We give examples where the spectrum can be made explicit and present a chapt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ginoux, Nicolas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1976
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02590nam a22005055i 4500
001 978-3-642-01570-0
003 DE-He213
005 20151204151746.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642015700  |9 978-3-642-01570-0 
024 7 |a 10.1007/978-3-642-01570-0  |2 doi 
040 |d GrThAP 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 514.74  |2 23 
100 1 |a Ginoux, Nicolas.  |e author. 
245 1 4 |a The Dirac Spectrum  |h [electronic resource] /  |c by Nicolas Ginoux. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XV, 156 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1976 
505 0 |a Basics of spin geometry -- Explicit computations of spectra -- Lower eigenvalue estimates on closed manifolds -- Lower eigenvalue estimates on compact manifolds with boundary -- Upper eigenvalue bounds on closed manifolds -- Prescription of eigenvalues on closed manifolds -- The Dirac spectrum on non-compact manifolds -- Other topics related with the Dirac spectrum. 
520 |a This volume surveys the spectral properties of the spin Dirac operator. After a brief introduction to spin geometry, we present the main known estimates for Dirac eigenvalues on compact manifolds with or without boundaries. We give examples where the spectrum can be made explicit and present a chapter dealing with the non-compact setting. The methods mostly involve elementary analytical techniques and are therefore accessible for Master students entering the subject. A complete and updated list of references is also included. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642015694 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1976 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-01570-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)