Boundary Value Problems and Markov Processes

This volume is devoted to a thorough and accessible exposition on the functional analytic approach to the problem of construction of Markov processes with Ventcel' boundary conditions in probability theory. Analytically, a Markovian particle in a domain of Euclidean space is governed by an inte...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Taira, Kazuaki (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1499
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04092nam a22005295i 4500
001 978-3-642-01677-6
003 DE-He213
005 20151204164411.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642016776  |9 978-3-642-01677-6 
024 7 |a 10.1007/978-3-642-01677-6  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Taira, Kazuaki.  |e author. 
245 1 0 |a Boundary Value Problems and Markov Processes  |h [electronic resource] /  |c by Kazuaki Taira. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XII, 192 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1499 
505 0 |a and Main Results -- Semigroup Theory -- L Theory of Pseudo-Differential Operators -- L Approach to Elliptic Boundary Value Problems -- Proof of Theorem 1.1 -- A Priori Estimates -- Proof of Theorem 1.2 -- Proof of Theorem 1.3 - Part (i) -- Proof of Theorem 1.3, Part (ii) -- Application to Semilinear Initial-Boundary Value Problems -- Concluding Remarks. 
520 |a This volume is devoted to a thorough and accessible exposition on the functional analytic approach to the problem of construction of Markov processes with Ventcel' boundary conditions in probability theory. Analytically, a Markovian particle in a domain of Euclidean space is governed by an integro-differential operator, called a Waldenfels operator, in the interior of the domain, and it obeys a boundary condition, called the Ventcel' boundary condition, on the boundary of the domain. Probabilistically, a Markovian particle moves both by jumps and continuously in the state space and it obeys the Ventcel' boundary condition, which consists of six terms corresponding to the diffusion along the boundary, the absorption phenomenon, the reflection phenomenon, the sticking (or viscosity) phenomenon, the jump phenomenon on the boundary, and the inward jump phenomenon from the boundary. In particular, second-order elliptic differential operators are called diffusion operators and describe analytically strong Markov processes with continuous paths in the state space such as Brownian motion. We observe that second-order elliptic differential operators with smooth coefficients arise naturally in connection with the problem of construction of Markov processes in probability. Since second-order elliptic differential operators are pseudo-differential operators, we can make use of the theory of pseudo-differential operators as in the previous book: Semigroups, boundary value problems and Markov processes (Springer-Verlag, 2004). Our approach here is distinguished by its extensive use of the ideas and techniques characteristic of the recent developments in the theory of partial differential equations. Several recent developments in the theory of singular integrals have made further progress in the study of elliptic boundary value problems and hence in the study of Markov processes possible. The presentation of these new results is the main purpose of this book. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Operator theory. 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Operator Theory. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642016769 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1499 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-01677-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)