Collected Works Representations of Functions, Celestial Mechanics and KAM Theory, 1957–1965 /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Arnold, Vladimir I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Givental, Alexander B. (Επιμελητής έκδοσης), Khesin, Boris A. (Επιμελητής έκδοσης), Marsden, Jerrold E. (Επιμελητής έκδοσης), Varchenko, Alexander N. (Επιμελητής έκδοσης), Vassiliev, Victor A. (Επιμελητής έκδοσης), Viro, Oleg Ya (Επιμελητής έκδοσης), Zakalyukin, Vladimir M. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Vladimir I. Arnold - Collected Works ; 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04784nam a22005775i 4500
001 978-3-642-01742-1
003 DE-He213
005 20151125201208.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642017421  |9 978-3-642-01742-1 
024 7 |a 10.1007/978-3-642-01742-1  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Arnold, Vladimir I.  |e author. 
245 1 0 |a Collected Works  |h [electronic resource] :  |b Representations of Functions, Celestial Mechanics and KAM Theory, 1957–1965 /  |c by Vladimir I. Arnold ; edited by Alexander B. Givental, Boris A. Khesin, Jerrold E. Marsden, Alexander N. Varchenko, Victor A. Vassiliev, Oleg Ya. Viro, Vladimir M. Zakalyukin. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XIII, 487 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Vladimir I. Arnold - Collected Works ;  |v 1 
505 0 |a On the representation of functions of two variables in the form ?[?(x) + ?(y)] -- On functions of three variables -- The mathematics workshop for schools at Moscow State University -- The school mathematics circle at Moscow State University: harmonic functions -- On the representation of functions of several variables as a superposition of functions of a smaller number of variables -- Representation of continuous functions of three variables by the superposition of continuous functions of two variables -- Some questions of approximation and representation of functions -- Kolmogorov seminar on selected questions of analysis -- On analytic maps of the circle onto itself -- Small denominators. I. Mapping of the circumference onto itself -- The stability of the equilibrium position of a Hamiltonian system of ordinary differential equations in the general elliptic case -- Generation of almost periodic motion from a family of periodic motions -- Some remarks on flows of line elements and frames -- A test for nomographic representability using Decartes’ rectilinear abacus -- Remarks on winding numbers -- On the behavior of an adiabatic invariant under slow periodic variation of the Hamiltonian -- Small perturbations of the automorphisms of the torus -- The classical theory of perturbations and the problem of stability of planetary systems -- Letter to the editor -- Dynamical systems and group representations at the Stockholm Mathematics Congress -- Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian -- Small denominators and stability problems in classical and celestial mechanics -- Small denominators and problems of stability of motion in classical and celestial mechanics -- Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region -- On a theorem of Liouville concerning integrable problems of dynamics -- Instability of dynamical systems with several degrees of freedom -- On the instability of dynamical systems with several degrees of freedom -- Errata to V.I. Arnol’d’s paper: “Small denominators. I.” -- Small denominators and the problem of stability in classical and celestial mechanics -- Stability and instability in classical mechanics -- Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution -- On a topological property of globally canonical maps in classical mechanics. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Partial differential equations. 
650 0 |a Functions of real variables. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Algebra. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Real Functions. 
700 1 |a Givental, Alexander B.  |e editor. 
700 1 |a Khesin, Boris A.  |e editor. 
700 1 |a Marsden, Jerrold E.  |e editor. 
700 1 |a Varchenko, Alexander N.  |e editor. 
700 1 |a Vassiliev, Victor A.  |e editor. 
700 1 |a Viro, Oleg Ya.  |e editor. 
700 1 |a Zakalyukin, Vladimir M.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642017414 
830 0 |a Vladimir I. Arnold - Collected Works ;  |v 1 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-01742-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)