Transfer in Reinforcement Learning Domains
In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. The RL framework has gained popularity with the development of algorithms capable of mastering increasingly complex problems, but learning difficult tasks is often slow...
Κύριος συγγραφέας: | Taylor, Matthew E. (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2009.
|
Σειρά: | Studies in Computational Intelligence,
216 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Reinforcement Learning State-of-the-Art /
Έκδοση: (2012) -
Adaptive Representations for Reinforcement Learning
ανά: Whiteson, Shimon
Έκδοση: (2010) -
Design of Experiments for Reinforcement Learning
ανά: Gatti, Christopher
Έκδοση: (2015) -
Innovation through Knowledge Transfer
Έκδοση: (2010) -
Innovation through Knowledge Transfer 2010
Έκδοση: (2011)