The LLL Algorithm Survey and Applications /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nguyen, Phong Q. (Επιμελητής έκδοσης), Vallée, Brigitte (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Information Security and Cryptography,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02769nam a22005295i 4500
001 978-3-642-02295-1
003 DE-He213
005 20151204182755.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642022951  |9 978-3-642-02295-1 
024 7 |a 10.1007/978-3-642-02295-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D35 
072 7 |a UMB  |2 bicssc 
072 7 |a COM062000  |2 bisacsh 
082 0 4 |a 005.73  |2 23 
245 1 4 |a The LLL Algorithm  |h [electronic resource] :  |b Survey and Applications /  |c edited by Phong Q. Nguyen, Brigitte Vallée. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XIV, 496 p. 42 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Security and Cryptography,  |x 1619-7100 
505 0 |a The History of the LLL-Algorithm -- Hermite#x2019;s Constant and Lattice Algorithms -- Probabilistic Analyses of Lattice Reduction Algorithms -- Progress on LLL and Lattice Reduction -- Floating-Point LLL: Theoretical and Practical Aspects -- LLL: A Tool for Effective Diophantine Approximation -- Selected Applications of LLL in Number Theory -- The van Hoeij Algorithm for Factoring Polynomials -- The LLL Algorithm and Integer Programming -- Using LLL-Reduction for Solving RSA and Factorization Problems -- Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign -- The Geometry of Provable Security: Some Proofs of Security in Which Lattices Make a Surprise Appearance -- Cryptographic Functions from Worst-Case Complexity Assumptions -- Inapproximability Results for Computational Problems on Lattices -- On the Complexity of Lattice Problems with Polynomial Approximation Factors. 
650 0 |a Computer science. 
650 0 |a Data structures (Computer science). 
650 0 |a Data encryption (Computer science). 
650 0 |a Algorithms. 
650 0 |a Computer science  |x Mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Structures. 
650 2 4 |a Data Encryption. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Algorithms. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
700 1 |a Nguyen, Phong Q.  |e editor. 
700 1 |a Vallée, Brigitte.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642022944 
830 0 |a Information Security and Cryptography,  |x 1619-7100 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02295-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)