Stochastic Analysis in Discrete and Continuous Settings With Normal Martingales /

This volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The si...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Privault, Nicolas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1982
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02805nam a22005175i 4500
001 978-3-642-02380-4
003 DE-He213
005 20151204172644.0
007 cr nn 008mamaa
008 100715s2009 gw | s |||| 0|eng d
020 |a 9783642023804  |9 978-3-642-02380-4 
024 7 |a 10.1007/978-3-642-02380-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Privault, Nicolas.  |e author. 
245 1 0 |a Stochastic Analysis in Discrete and Continuous Settings  |h [electronic resource] :  |b With Normal Martingales /  |c by Nicolas Privault. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XVI, 282 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1982 
505 0 |a The Discrete Time Case -- Continuous Time Normal Martingales -- Gradient and Divergence Operators -- Annihilation and Creation Operators -- Analysis on the Wiener Space -- Analysis on the Poisson Space -- Local Gradients on the Poisson Space -- Option Hedging in Continuous Time. 
520 |a This volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The simultaneous treatment of continuous and jump processes is done in the framework of normal martingales; that includes the Brownian motion and compensated Poisson processes as specific cases. In particular, the basic tools of stochastic analysis (chaos representation, gradient, divergence, integration by parts) are presented in this general setting. Applications are given to functional and deviation inequalities and mathematical finance. 
650 0 |a Mathematics. 
650 0 |a Game theory. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642023798 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1982 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02380-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)