A Primer on Scientific Programming with Python

Theaimofthisbookistoteachcomputerprogrammingusingexamples from mathematics and the natural sciences. We have chosen to use the Python programming language because it combines remarkable power with very clean, simple, and compact syntax. Python is easy to learn and very well suited for an introductio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Langtangen, Hans Petter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Texts in Computational Science and Engineering, 6
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03372nam a22005535i 4500
001 978-3-642-02475-7
003 DE-He213
005 20151204191707.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642024757  |9 978-3-642-02475-7 
024 7 |a 10.1007/978-3-642-02475-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Langtangen, Hans Petter.  |e author. 
245 1 2 |a A Primer on Scientific Programming with Python  |h [electronic resource] /  |c by Hans Petter Langtangen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XXVIII, 694 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Computational Science and Engineering,  |x 1611-0994 ;  |v 6 
505 0 |a Computing with Formulas -- Basic Constructions -- Input Data and Error Handling -- Array Computing and Curve Plotting -- Sequences and Difference Equations -- Files, Strings, and Dictionaries -- to Classes -- Random Numbers and Simple Games -- Object-Oriented Programming. 
520 |a Theaimofthisbookistoteachcomputerprogrammingusingexamples from mathematics and the natural sciences. We have chosen to use the Python programming language because it combines remarkable power with very clean, simple, and compact syntax. Python is easy to learn and very well suited for an introduction to computer programming. Python is also quite similar to Matlab and a good language for doing mathematical computing. It is easy to combine Python with compiled languages, like Fortran, C, and C++, which are widely used languages forscienti?ccomputations.AseamlessintegrationofPythonwithJava is o?ered by a special version of Python called Jython. The examples in this book integrate programming with appli- tions to mathematics, physics, biology, and ?nance. The reader is - pected to have knowledge of basic one-variable calculus as taught in mathematics-intensive programs in high schools. It is certainly an - vantage to take a university calculus course in parallel, preferably c- taining both classical and numerical aspects of calculus. Although not strictly required, a background in high school physics makes many of the examples more meaningful. 
650 0 |a Computer science. 
650 0 |a Software engineering. 
650 0 |a Computer programming. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 1 4 |a Computer Science. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Software Engineering/Programming and Operating Systems. 
650 2 4 |a Numerical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642024740 
830 0 |a Texts in Computational Science and Engineering,  |x 1611-0994 ;  |v 6 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02475-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)