Sensitivity Analysis for Neural Networks

Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yeung, Daniel S. (Συγγραφέας), Cloete, Ian (Συγγραφέας), Shi, Daming (Συγγραφέας), Ng, Wing W. Y. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Natural Computing Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03662nam a22006495i 4500
001 978-3-642-02532-7
003 DE-He213
005 20151030001507.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642025327  |9 978-3-642-02532-7 
024 7 |a 10.1007/978-3-642-02532-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Yeung, Daniel S.  |e author. 
245 1 0 |a Sensitivity Analysis for Neural Networks  |h [electronic resource] /  |c by Daniel S. Yeung, Ian Cloete, Daming Shi, Wing W. Y. Ng. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a VIII, 86 p. 24 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 1619-7127 
505 0 |a to Neural Networks -- Principles of Sensitivity Analysis -- Hyper-Rectangle Model -- Sensitivity Analysis with Parameterized Activation Function -- Localized Generalization Error Model -- Critical Vector Learning for RBF Networks -- Sensitivity Analysis of Prior Knowledge1 -- Applications. 
520 |a Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 0 |a Pattern recognition. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Engineering design. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Engineering Design. 
700 1 |a Cloete, Ian.  |e author. 
700 1 |a Shi, Daming.  |e author. 
700 1 |a Ng, Wing W. Y.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642025310 
830 0 |a Natural Computing Series,  |x 1619-7127 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02532-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)