Neural Networks and Micromechanics

Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - mat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kussul, Ernst (Συγγραφέας), Baidyk, Tatiana (Συγγραφέας), Wunsch, Donald C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03969nam a22006255i 4500
001 978-3-642-02535-8
003 DE-He213
005 20151204185905.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642025358  |9 978-3-642-02535-8 
024 7 |a 10.1007/978-3-642-02535-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kussul, Ernst.  |e author. 
245 1 0 |a Neural Networks and Micromechanics  |h [electronic resource] /  |c by Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a X, 221 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Classical Neural Networks -- Neural Classifiers -- Permutation Coding Technique for Image Recognition System -- Associative-Projective Neural Networks (APNNs) -- Recognition of Textures, Object Shapes, and Handwritten Words -- Hardware for Neural Networks -- Micromechanics -- Applications of Neural Networks in Micromechanics -- Texture Recognition in Micromechanics -- Adaptive Algorithms Based on Technical Vision. 
520 |a Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - material, energy, space consumption, equipment, and maintenance - decrease with the scaling down of equipment sizes. To obtain really inexpensive production, labor costs must be reduced to almost zero. For this purpose, fully automated microfactories will be developed. To create fully automated microfactories, we propose using arti?cial neural networks having different structures. The simplest perceptron-like neural network can be used at the lowest levels of microfactory control systems. Adaptive Critic Design, based on neural network models of the microfactory objects, can be used for manufacturing process optimization, while associative-projective neural n- works and networks like ART could be used for the highest levels of control systems. We have examined the performance of different neural networks in traditional image recognition tasks and in problems that appear in micromechanical manufacturing. We and our colleagues also have developed an approach to mic- equipment creation in the form of sequential generations. Each subsequent gene- tion must be of a smaller size than the previous ones and must be made by previous generations. Prototypes of ?rst-generation microequipment have been developed and assessed. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 0 |a Mechanical engineering. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Manufacturing industries. 
650 0 |a Machines. 
650 0 |a Tools. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Mechanical Engineering. 
650 2 4 |a Manufacturing, Machines, Tools. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Control, Robotics, Mechatronics. 
700 1 |a Baidyk, Tatiana.  |e author. 
700 1 |a Wunsch, Donald C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642025341 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02535-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)