Knowledge Discovery in Spatial Data

This book deals with knowledge discovery and data mining in spatial and temporal data, seeking to present novel methods that can be employed to discover spatial structures and processes in complex data. Spatial knowledge discovery is examined through the tasks of clustering, classification, associat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Leung, Yee (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Advances in Spatial Science, The Regional Science Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03195nam a22005415i 4500
001 978-3-642-02664-5
003 DE-He213
005 20151204183849.0
007 cr nn 008mamaa
008 100715s2009 gw | s |||| 0|eng d
020 |a 9783642026645  |9 978-3-642-02664-5 
024 7 |a 10.1007/978-3-642-02664-5  |2 doi 
040 |d GrThAP 
050 4 |a HM623 
072 7 |a JFC  |2 bicssc 
072 7 |a GTB  |2 bicssc 
072 7 |a SOC000000  |2 bisacsh 
082 0 4 |a 306.091  |2 23 
100 1 |a Leung, Yee.  |e author. 
245 1 0 |a Knowledge Discovery in Spatial Data  |h [electronic resource] /  |c by Yee Leung. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XXIX, 360 p. 113 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Spatial Science, The Regional Science Series,  |x 1430-9602 
505 0 |a Discovery of Intrinsic Clustering in Spatial Data -- Statistical Approach to the Identification of Separation Surface for Spatial Data -- Algorithmic Approach to the Identification of Classification Rules or Separation Surface for Spatial Data -- Discovery of Spatial Relationships in Spatial Data -- Discovery of Structures and Processes in Temporal Data -- Summary and Outlooks. 
520 |a This book deals with knowledge discovery and data mining in spatial and temporal data, seeking to present novel methods that can be employed to discover spatial structures and processes in complex data. Spatial knowledge discovery is examined through the tasks of clustering, classification, association/relationship, and process. Among the covered topics are discovery of spatial structures as natural clusters, identification of separation surfaces and extraction of classification rules from statistical and algorithmic perspectives, detecting local and global aspects of non-stationarity of spatial associations and relationships, unraveling scaling behaviors of time series data, including self-similarity, and long range dependence. Particular emphasis is placed on the treatment of scale, noise, imperfection and mixture distribution. Numerical examples and a wide scope of applications are used throughout the book to substantiate the conceptual and theoretical arguments. 
650 0 |a Culture  |x Study and teaching. 
650 0 |a Data mining. 
650 0 |a Geography. 
650 0 |a Statistics. 
650 0 |a Regional economics. 
650 0 |a Spatial economics. 
650 1 4 |a Cultural and Media Studies. 
650 2 4 |a Regional and Cultural Studies. 
650 2 4 |a Statistics, general. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Regional/Spatial Science. 
650 2 4 |a Geography, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642026638 
830 0 |a Advances in Spatial Science, The Regional Science Series,  |x 1430-9602 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02664-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)