Cognitive Techniques in Visual Data Interpretation

The following chapters of this book presents key issues concerning the neurophysiological aspects of executing cognitive thought processes and the basics of cognitive informatics and new proposals of UBIAS systems dedicated to the meaning-based analysis of selected types of medical images. In partic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ogiela, Lidia (Συγγραφέας), Ogiela, Marek R. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 228
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 08673nam a22005655i 4500
001 978-3-642-02693-5
003 DE-He213
005 20151204191142.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642026935  |9 978-3-642-02693-5 
024 7 |a 10.1007/978-3-642-02693-5  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Ogiela, Lidia.  |e author. 
245 1 0 |a Cognitive Techniques in Visual Data Interpretation  |h [electronic resource] /  |c by Lidia Ogiela, Marek R. Ogiela. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a VIII, 115 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 228 
505 0 |a Traditional pattern recognition technigues and latest image interpretation approaches -- Cognitive aspects performed in the human mind -- The fundamentals and development of Cognitive Informatics -- Cognitive information systems -- Understanding-based image analysis systems -- UBIAS systems in cognitive interpretation of medical visualization -- Summary. 
520 |a The following chapters of this book presents key issues concerning the neurophysiological aspects of executing cognitive thought processes and the basics of cognitive informatics and new proposals of UBIAS systems dedicated to the meaning-based analysis of selected types of medical images. In particular, to structure the considerations of pattern classification methods, Chapter 2 discusses traditional image recognition techniques and algorithms from the simplest methods based on metric spaces up to methods that use the paradigms of computer image understanding. Chapter 3 deals with the cognitive aspects of brain function. Information from this chapter allows the authors, in a latter part of this book, to show functional analogies between the operation of biological systems and computer implementations. Chapter 4 provides a short compendium of knowledge about the new branch of informatics which formally describes thought processes, namely cognitive informatics. The introduction to subjects of cognitive processes analysed by cognitive informatics will then allow us to introduce new classes of computer systems executing cognitive resonance processes. The following Chapter 5 defines a new class of information systems using cognitive resonance processes. This chapter reviews several proposals of various classes of cognitive categorisation systems put forward by the authors. Chapter 6 contains a broader discussion of the UBIAS system class which the authors proposed for the meaning-based analysis of medical images. Then, Chapter 7 discusses in detail two examples of UBIAS systems built for the semantic classification of foot bone X-rays and images of long bone injuries in extremities. Chapter 8, the last, compiles and summarises information on creating cognitive vision systems designed for the semantic classification of patterns. The authors present this book to Readers in the hope that it will stir their fascination with the scientific aspects of creating new generation computer systems which imitate thought processes and can determine the meaning of complex image patterns. The following chapters of this book presents key issues concerning the neurophysiological aspects of executing cognitive thought processes and the basics of cognitive informatics and new proposals of UBIAS systems dedicated to the meaning-based analysis of selected types of medical images. In particular, to structure the considerations of pattern classification methods, Chapter 2 discusses traditional image recognition techniques and algorithms from the simplest methods based on metric spaces up to methods that use the paradigms of computer image understanding. Chapter 3 deals with the cognitive aspects of brain function. Information from this chapter allows the authors, in a latter part of this book, to show functional analogies between the operation of biological systems and computer implementations. Chapter 4 provides a short compendium of knowledge about the new branch of informatics which formally describes thought processes, namely cognitive informatics. The introduction to subjects of cognitive processes analysed by cognitive informatics will then allow us to introduce new classes of computer systems executing cognitive resonance processes. The following Chapter 5 defines a new class of information systems using cognitive resonance processes. This chapter reviews several proposals of various classes of cognitive categorisation systems put forward by the authors. Chapter 6 contains a broader discussion of the UBIAS system class which the authors proposed for the meaning-based analysis of medical images. Then, Chapter 7 discusses in detail two examples of UBIAS systems built for the semantic classification of foot bone X-rays and images of long bone injuries in extremities. Chapter 8, the last, compiles and summarises information on creating cognitive vision systems designed for the semantic classification of patterns. The authors present this book to Readers in the hope that it will stir their fascination with the scientific aspects of creating new generation computer systems which imitate thought processes and can determine the meaning of complex image patterns. The following chapters of this book presents key issues concerning the neurophysiological aspects of executing cognitive thought processes and the basics of cognitive informatics and new proposals of UBIAS systems dedicated to the meaning-based analysis of selected types of medical images. In particular, to structure the considerations of pattern classification methods, Chapter 2 discusses traditional image recognition techniques and algorithms from the simplest methods based on metric spaces up to methods that use the paradigms of computer image understanding. Chapter 3 deals with the cognitive aspects of brain function. Information from this chapter allows the authors, in a latter part of this book, to show functional analogies between the operation of biological systems and computer implementations. Chapter 4 provides a short compendium of knowledge about the new branch of informatics which formally describes thought processes, namely cognitive informatics. The introduction to subjects of cognitive processes analysed by cognitive informatics will then allow us to introduce new classes of computer systems executing cognitive resonance processes. The following Chapter 5 defines a new class of information systems using cognitive resonance processes. This chapter reviews several proposals of various classes of cognitive categorisation systems put forward by the authors. Chapter 6 contains a broader discussion of the UBIAS system class which the authors proposed for the meaning-based analysis of medical images. Then, Chapter 7 discusses in detail two examples of UBIAS systems built for the semantic classification of foot bone X-rays and images of long bone injuries in extremities. Chapter 8, the last, compiles and summarises information on creating cognitive vision systems designed for the semantic classification of patterns. The authors present this book to Readers in the hope that it will stir their fascination with the scientific aspects of creating new generation computer systems which imitate thought processes and can determine the meaning of complex image patterns. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Ogiela, Marek R.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642026928 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 228 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02693-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)