Theory of Zipf's Law and Beyond

Zipf's law is one of the few quantitative reproducible regularities found in economics. It states that, for most countries, the size distributions of city sizes and of firms are power laws with a specific exponent: the number of cities and of firms with sizes greater than S is inversely proport...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Saichev, Alex (Συγγραφέας), Malevergne, Yannick (Συγγραφέας), Sornette, Didier (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Economics and Mathematical Systems, 632
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03640nam a22005175i 4500
001 978-3-642-02946-2
003 DE-He213
005 20151204153012.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642029462  |9 978-3-642-02946-2 
024 7 |a 10.1007/978-3-642-02946-2  |2 doi 
040 |d GrThAP 
050 4 |a HB172.5 
072 7 |a KCB  |2 bicssc 
072 7 |a KCBM  |2 bicssc 
072 7 |a BUS039000  |2 bisacsh 
072 7 |a BUS045000  |2 bisacsh 
082 0 4 |a 339  |2 23 
100 1 |a Saichev, Alex.  |e author. 
245 1 0 |a Theory of Zipf's Law and Beyond  |h [electronic resource] /  |c by Alex Saichev, Yannick Malevergne, Didier Sornette. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XII, 171 p. 44 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 632 
505 0 |a Continuous Gibrat#x2019;s Law and Gabaix#x2019;s Derivation of Zipf#x2019;s Law -- Flow of Firm Creation -- Useful Properties of Realizations of the Geometric Brownian Motion -- Exit or #x201C;Death#x201D; of Firms -- Deviations from Gibrat#x2019;s Law and Implications for Generalized Zipf#x2019;s Laws -- Firm#x2019;s Sudden Deaths -- Non-stationary Mean Birth Rate -- Properties of the Realization Dependent Distribution of Firm Sizes -- Future Directions and Conclusions. 
520 |a Zipf's law is one of the few quantitative reproducible regularities found in economics. It states that, for most countries, the size distributions of city sizes and of firms are power laws with a specific exponent: the number of cities and of firms with sizes greater than S is inversely proportional to S. Zipf's law also holds in many other scientific fields. Most explanations start with Gibrat's law of proportional growth (also known as "preferential attachment'' in the application to network growth) but need to incorporate additional constraints and ingredients introducing deviations from it. This book presents a general theoretical derivation of Zipf's law, providing a synthesis and extension of previous approaches. The general theory is presented in the language of firm dynamics for the sake of convenience but applies to many other systems. It takes into account (i) time-varying firm creation, (ii) firm's exit resulting from both a lack of sufficient capital and sudden external shocks, (iii) the coupling between firm's birth rate and the growth of the value of the population of firms. The robustness of Zipf's law is understood from the approximate validity of a general balance condition. A classification of the mechanisms responsible for deviations from Zipf's law is also offered. 
650 0 |a Probabilities. 
650 0 |a Economic theory. 
650 0 |a Macroeconomics. 
650 1 4 |a Economics. 
650 2 4 |a Macroeconomics/Monetary Economics//Financial Economics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
700 1 |a Malevergne, Yannick.  |e author. 
700 1 |a Sornette, Didier.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642029455 
830 0 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 632 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-02946-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)