Generalized Gaussian Error Calculus

For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evalu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grabe, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03383nam a22004455i 4500
001 978-3-642-03305-6
003 DE-He213
005 20151125141102.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 |a 9783642033056  |9 978-3-642-03305-6 
024 7 |a 10.1007/978-3-642-03305-6  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Grabe, Michael.  |e author. 
245 1 0 |a Generalized Gaussian Error Calculus  |h [electronic resource] /  |c by Michael Grabe. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XIII, 301 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Basics of Metrology -- True Values and Traceability -- Models and Approaches -- Generalized Gaussian Error Calculus -- The New Uncertainties -- Treatment of Random Errors -- Treatment of Systematic Errors -- Error Propagation -- Means and Means of Means -- Functions of Erroneous Variables -- Method of Least Squares -- Essence of Metrology -- Dissemination of Units -- Multiples and Sub-multiples -- Founding Pillars -- Fitting of Straight Lines -- Preliminaries -- Straight Lines: Case (i) -- Straight Lines: Case (ii) -- Straight Lines: Case (iii) -- Fitting of Planes -- Preliminaries -- Planes: Case (i) -- Planes: Case (ii) -- Planes: Case (iii) -- Fitting of Parabolas -- Preliminaries -- Parabolas: Case (i) -- Parabolas: Case (ii) -- Parabolas: Case (iii) -- Non-Linear Fitting -- Series Truncation -- Transformation. 
520 |a For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence interval as put down by Student, and a contribution due to unknown systematic errors, as expressed by an appropriate worst case estimation. 
650 0 |a Physics. 
650 0 |a System theory. 
650 0 |a Engineering. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Engineering, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642033049 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-03305-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)