A Course in Commutative Algebra

This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book mainta...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kemper, Gregor (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Graduate Texts in Mathematics, 256
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02773nam a22004935i 4500
001 978-3-642-03545-6
003 DE-He213
005 20151103141133.0
007 cr nn 008mamaa
008 101202s2011 gw | s |||| 0|eng d
020 |a 9783642035456  |9 978-3-642-03545-6 
024 7 |a 10.1007/978-3-642-03545-6  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Kemper, Gregor.  |e author. 
245 1 2 |a A Course in Commutative Algebra  |h [electronic resource] /  |c by Gregor Kemper. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 248 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 256 
505 0 |a Introduction -- Part I The Algebra Geometry Lexicon: 1 Hilbert's Nullstellensatz; 2 Noetherian and Artinian Rings; 3 The Zariski Topology; 4 A Summary of the Lexicon -- Part II Dimension: 5 Krull Dimension and Transcendence Degree; 6 Localization; 7 The Principal Ideal Theorem; 8 Integral Extensions -- Part III Computational Methods: 9 Gröbner Bases; 10 Fibers and Images of Morphisms Revisited; 11 Hilbert Series and Dimension -- Part IV Local Rings: 12 Dimension Theory; 13 Regular Local Rings; 14 Rings of Dimension One -- References -- Notation -- Index. 
520 |a This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Computer mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642035449 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 256 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-03545-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)