|
|
|
|
LEADER |
02773nam a22004935i 4500 |
001 |
978-3-642-03545-6 |
003 |
DE-He213 |
005 |
20151103141133.0 |
007 |
cr nn 008mamaa |
008 |
101202s2011 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642035456
|9 978-3-642-03545-6
|
024 |
7 |
|
|a 10.1007/978-3-642-03545-6
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA564-609
|
072 |
|
7 |
|a PBMW
|2 bicssc
|
072 |
|
7 |
|a MAT012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.35
|2 23
|
100 |
1 |
|
|a Kemper, Gregor.
|e author.
|
245 |
1 |
2 |
|a A Course in Commutative Algebra
|h [electronic resource] /
|c by Gregor Kemper.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2011.
|
300 |
|
|
|a XII, 248 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Graduate Texts in Mathematics,
|x 0072-5285 ;
|v 256
|
505 |
0 |
|
|a Introduction -- Part I The Algebra Geometry Lexicon: 1 Hilbert's Nullstellensatz; 2 Noetherian and Artinian Rings; 3 The Zariski Topology; 4 A Summary of the Lexicon -- Part II Dimension: 5 Krull Dimension and Transcendence Degree; 6 Localization; 7 The Principal Ideal Theorem; 8 Integral Extensions -- Part III Computational Methods: 9 Gröbner Bases; 10 Fibers and Images of Morphisms Revisited; 11 Hilbert Series and Dimension -- Part IV Local Rings: 12 Dimension Theory; 13 Regular Local Rings; 14 Rings of Dimension One -- References -- Notation -- Index.
|
520 |
|
|
|a This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Algebraic geometry.
|
650 |
|
0 |
|a Commutative algebra.
|
650 |
|
0 |
|a Commutative rings.
|
650 |
|
0 |
|a Computer mathematics.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Algebraic Geometry.
|
650 |
2 |
4 |
|a Commutative Rings and Algebras.
|
650 |
2 |
4 |
|a Computational Mathematics and Numerical Analysis.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642035449
|
830 |
|
0 |
|a Graduate Texts in Mathematics,
|x 0072-5285 ;
|v 256
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-642-03545-6
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|