Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics Second International Workshop, SLS 2009, Brussels, Belgium, September 3-4, 2009. Proceedings /

Stochastic local search (SLS) algorithms are established tools for the solution of computationally hard problems arising in computer science, business adm- istration, engineering, biology, and various other disciplines. To a large extent, their success is due to their conceptual simplicity, broad ap...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Stützle, Thomas (Επιμελητής έκδοσης), Birattari, Mauro (Επιμελητής έκδοσης), Hoos, Holger H. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Σειρά:Lecture Notes in Computer Science, 5752
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05164nam a22005655i 4500
001 978-3-642-03751-1
003 DE-He213
005 20170118031054.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642037511  |9 978-3-642-03751-1 
024 7 |a 10.1007/978-3-642-03751-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.6-76.66 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
082 0 4 |a 005.11  |2 23 
245 1 0 |a Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics  |h [electronic resource] :  |b Second International Workshop, SLS 2009, Brussels, Belgium, September 3-4, 2009. Proceedings /  |c edited by Thomas Stützle, Mauro Birattari, Holger H. Hoos. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a X, 155 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5752 
505 0 |a High-Performance Local Search for Task Scheduling with Human Resource Allocation -- High-Performance Local Search for Task Scheduling with Human Resource Allocation -- On the Use of Run Time Distributions to Evaluate and Compare Stochastic Local Search Algorithms -- Estimating Bounds on Expected Plateau Size in MAXSAT Problems -- A Theoretical Analysis of the k-Satisfiability Search Space -- Loopy Substructural Local Search for the Bayesian Optimization Algorithm -- Running Time Analysis of ACO Systems for Shortest Path Problems -- Techniques and Tools for Local Search Landscape Visualization and Analysis -- Short Papers -- High-Performance Local Search for Solving Real-Life Inventory Routing Problems -- A Detailed Analysis of Two Metaheuristics for the Team Orienteering Problem -- On the Explorative Behavior of MAX–MIN Ant System -- A Study on Dominance-Based Local Search Approaches for Multiobjective Combinatorial Optimization -- A Memetic Algorithm for the Multidimensional Assignment Problem -- Autonomous Control Approach for Local Search -- EasyGenetic: A Template Metaprogramming Framework for Genetic Master-Slave Algorithms -- Adaptive Operator Selection for Iterated Local Search -- Improved Robustness through Population Variance in Ant Colony Optimization -- Mixed-Effects Modeling of Optimisation Algorithm Performance. 
520 |a Stochastic local search (SLS) algorithms are established tools for the solution of computationally hard problems arising in computer science, business adm- istration, engineering, biology, and various other disciplines. To a large extent, their success is due to their conceptual simplicity, broad applicability and high performance for many important problems studied in academia and enco- tered in real-world applications. SLS methods include a wide spectrum of te- niques, ranging from constructive search procedures and iterative improvement algorithms to more complex SLS methods, such as ant colony optimization, evolutionary computation, iterated local search, memetic algorithms, simulated annealing, tabu search, and variable neighborhood search. Historically, the development of e?ective SLS algorithms has been guided to a large extent by experience and intuition. In recent years, it has become - creasingly evident that success with SLS algorithms depends not merely on the adoption and e?cient implementation of the most appropriate SLS technique for a given problem, but also on the mastery of a more complex algorithm - gineering process. Challenges in SLS algorithm development arise partly from the complexity of the problems being tackled and in part from the many - grees of freedom researchers and practitioners encounter when developing SLS algorithms. Crucial aspects in the SLS algorithm development comprise al- rithm design, empirical analysis techniques, problem-speci?c background, and background knowledge in several key disciplines and areas, including computer science, operations research, arti?cial intelligence, and statistics. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Data structures (Computer science). 
650 0 |a Algorithms. 
650 0 |a Computer logic. 
650 1 4 |a Computer Science. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Data Structures. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Data Storage Representation. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Logics and Meanings of Programs. 
700 1 |a Stützle, Thomas.  |e editor. 
700 1 |a Birattari, Mauro.  |e editor. 
700 1 |a Hoos, Holger H.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642037504 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5752 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-03751-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)