Advances in Intelligent Data Analysis VIII 8th International Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2, 2009. Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Adams, Niall M. (Επιμελητής έκδοσης), Robardet, Céline (Επιμελητής έκδοσης), Siebes, Arno (Επιμελητής έκδοσης), Boulicaut, Jean-François (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Σειρά:Lecture Notes in Computer Science, 5772
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04906nam a22006255i 4500
001 978-3-642-03915-7
003 DE-He213
005 20170124053756.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642039157  |9 978-3-642-03915-7 
024 7 |a 10.1007/978-3-642-03915-7  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Advances in Intelligent Data Analysis VIII  |h [electronic resource] :  |b 8th International Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2, 2009. Proceedings /  |c edited by Niall M. Adams, Céline Robardet, Arno Siebes, Jean-François Boulicaut. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 418 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5772 
505 0 |a Invited Papers -- Intelligent Data Analysis in the 21st Century -- Analyzing the Localization of Retail Stores with Complex Systems Tools -- Selected Contributions 1 (Long Talks) -- Change (Detection) You Can Believe in: Finding Distributional Shifts in Data Streams -- Exploiting Data Missingness in Bayesian Network Modeling -- DEMScale: Large Scale MDS Accounting for a Ridge Operator and Demographic Variables -- How to Control Clustering Results? Flexible Clustering Aggregation -- Compensation of Translational Displacement in Time Series Clustering Using Cross Correlation -- Context-Based Distance Learning for Categorical Data Clustering -- Semi-supervised Text Classification Using RBF Networks -- Improving k-NN for Human Cancer Classification Using the Gene Expression Profiles -- Subgroup Discovery for Test Selection: A Novel Approach and Its Application to Breast Cancer Diagnosis -- Trajectory Voting and Classification Based on Spatiotemporal Similarity in Moving Object Databases -- Leveraging Call Center Logs for Customer Behavior Prediction -- Condensed Representation of Sequential Patterns According to Frequency-Based Measures -- ART-Based Neural Networks for Multi-label Classification -- Two-Way Grouping by One-Way Topic Models -- Selecting and Weighting Data for Building Consensus Gene Regulatory Networks -- Incremental Bayesian Network Learning for Scalable Feature Selection -- Feature Extraction and Selection from Vibration Measurements for Structural Health Monitoring -- Zero-Inflated Boosted Ensembles for Rare Event Counts -- Selected Contributions 2 (Short Talks) -- Mining the Temporal Dimension of the Information Propagation -- Adaptive Learning from Evolving Data Streams -- An Application of Intelligent Data Analysis Techniques to a Large Software Engineering Dataset -- Which Distance for the Identification and the Differentiation of Cell-Cycle Expressed Genes? -- Ontology-Driven KDD Process Composition -- Mining Frequent Gradual Itemsets from Large Databases -- Selecting Computer Architectures by Means of Control-Flow-Graph Mining -- Visualization-Driven Structural and Statistical Analysis of Turbulent Flows -- Distributed Algorithm for Computing Formal Concepts Using Map-Reduce Framework -- Multi-Optimisation Consensus Clustering -- Improving Time Series Forecasting by Discovering Frequent Episodes in Sequences -- Measure of Similarity and Compactness in Competitive Space -- Bayesian Solutions to the Label Switching Problem -- Efficient Vertical Mining of Frequent Closures and Generators -- Isotonic Classification Trees. 
650 0 |a Computer science. 
650 0 |a Information technology. 
650 0 |a Business  |x Data processing. 
650 0 |a Data structures (Computer science). 
650 0 |a Computers. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Data Structures. 
650 2 4 |a IT in Business. 
700 1 |a Adams, Niall M.  |e editor. 
700 1 |a Robardet, Céline.  |e editor. 
700 1 |a Siebes, Arno.  |e editor. 
700 1 |a Boulicaut, Jean-François.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642039140 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5772 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-03915-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)