Non-Standard Parameter Adaptation for Exploratory Data Analysis

Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by revie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Barbakh, Wesam Ashour (Συγγραφέας), Wu, Ying (Συγγραφέας), Fyfe, Colin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 249
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03539nam a22005295i 4500
001 978-3-642-04005-4
003 DE-He213
005 20151204150018.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642040054  |9 978-3-642-04005-4 
024 7 |a 10.1007/978-3-642-04005-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Barbakh, Wesam Ashour.  |e author. 
245 1 0 |a Non-Standard Parameter Adaptation for Exploratory Data Analysis  |h [electronic resource] /  |c by Wesam Ashour Barbakh, Ying Wu, Colin Fyfe. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XI, 223 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 249 
505 0 |a Review of Clustering Algorithms -- Review of Linear Projection Methods -- Non-standard Clustering Criteria -- Topographic Mappings and Kernel Clustering -- Online Clustering Algorithms and Reinforcement Learning -- Connectivity Graphs and Clustering with Similarity Functions -- Reinforcement Learning of Projections -- Cross Entropy Methods -- Artificial Immune Systems -- Conclusions. 
520 |a Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets. We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods. We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Wu, Ying.  |e author. 
700 1 |a Fyfe, Colin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642040047 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 249 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-04005-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)