Natural Intelligence for Scheduling, Planning and Packing Problems

Scheduling, planning and packing are ubiquitous problems that can be found in a wide range of real-world settings. These problems transpire in a large variety of forms, and have enormous socio-economic impact. For many years, significant work has been devoted to automating the processes of schedulin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Chiong, Raymond (Επιμελητής έκδοσης), Dhakal, Sandeep (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 250
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04771nam a22006015i 4500
001 978-3-642-04039-9
003 DE-He213
005 20151204164846.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642040399  |9 978-3-642-04039-9 
024 7 |a 10.1007/978-3-642-04039-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Natural Intelligence for Scheduling, Planning and Packing Problems  |h [electronic resource] /  |c edited by Raymond Chiong, Sandeep Dhakal. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XVI, 329 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 250 
505 0 |a Global Optimization in Supply Chain Operations -- Solving Real-World Vehicle Routing Problems with Evolutionary Algorithms -- A Genetic Algorithm with Priority Rules for Solving Job-Shop Scheduling Problems -- An Estimation of Distribution Algorithm for Flowshop Scheduling with Limited Buffers -- Solving Hierarchically Decomposable Problems with the Evolutionary Transition Algorithm -- Electrical Load Forecasting Using a Neural-Fuzzy Approach -- Quantised Problem Spaces and the Particle Swarm Algorithm -- A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks -- Ant Colony Optimization and Its Application to the Vehicle Routing Problem with Pickups and Deliveries -- Evolutionary and Ant Colony Optimization Based Approaches for a Two-Dimensional Strip Packing Problem -- Diagnosis, Configuration, Planning, and Pathfinding: Experiments in Nature-Inspired Optimization -- A Hybrid Intelligent System for Distributed Dynamic Scheduling. 
520 |a Scheduling, planning and packing are ubiquitous problems that can be found in a wide range of real-world settings. These problems transpire in a large variety of forms, and have enormous socio-economic impact. For many years, significant work has been devoted to automating the processes of scheduling, planning and packing using different kinds of methods. However, poor scaling and the lack of flexibility of many of the conventional methods coupled with the fact that most of the real-world problems across the application areas of scheduling, planning and packing nowadays tend to be of large scale, dynamic and full of complex dependencies have made it necessary to tackle them in unconventional ways. This volume, "Natural Intelligence for Scheduling, Planning and Packing Problems", is a collection of numerous natural intelligence based approaches for solving various kinds of scheduling, planning and packing problems. It comprises 12 chapters which present many methods that draw inspiration from nature, such as evolutionary algorithms, neural-fuzzy system, particle swarm algorithms, ant colony optimisation, extremal optimisation, raindrop optimisation, and so on. Problems addressed by these chapters include freight transportation, job shop scheduling, flowshop scheduling, electrical load forecasting, vehicle routing, two-dimensional strip packing, network configuration and forest planning, among others. Along with solving these problems, the contributing authors present a lively discussion of the various aspects of the nature-inspired algorithms utilised, providing very useful and important new insights into the research areas. 
650 0 |a Computer science. 
650 0 |a Production management. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Information technology. 
650 0 |a Business  |x Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Operations Management. 
650 2 4 |a IT in Business. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Operation Research/Decision Theory. 
700 1 |a Chiong, Raymond.  |e editor. 
700 1 |a Dhakal, Sandeep.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642040382 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 250 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-04039-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)