Permutation Complexity in Dynamical Systems Ordinal Patterns, Permutation Entropy and All That /

The study of permutation complexity can be envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal patterns, that is, permutations defined by the order relations among points in the orbits of dynamical systems. Since its inception in 2002 the concept of permutation entropy has s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Amigó, José (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Springer Series in Synergetics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03456nam a22005295i 4500
001 978-3-642-04084-9
003 DE-He213
005 20151204182513.0
007 cr nn 008mamaa
008 100327s2010 gw | s |||| 0|eng d
020 |a 9783642040849  |9 978-3-642-04084-9 
024 7 |a 10.1007/978-3-642-04084-9  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PHS  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Amigó, José.  |e author. 
245 1 0 |a Permutation Complexity in Dynamical Systems  |h [electronic resource] :  |b Ordinal Patterns, Permutation Entropy and All That /  |c by José Amigó. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a X, 280 p. 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Synergetics,  |x 0172-7389 
505 0 |a What Is This All About? -- First Applications -- Ordinal Patterns -- Ordinal Structure of the Shifts -- Ordinal Structure of the Signed Shifts -- Metric Permutation Entropy -- Topological Permutation Entropy -- Discrete Entropy -- Detection of Determinism -- Space–Time Dynamics -- Conclusion and Outlook. 
520 |a The study of permutation complexity can be envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal patterns, that is, permutations defined by the order relations among points in the orbits of dynamical systems. Since its inception in 2002 the concept of permutation entropy has sparked a new branch of research in particular regarding the time series analysis of dynamical systems that capitalizes on the order structure of the state space. Indeed, on one hand ordinal patterns and periodic points are closely related, yet ordinal patterns are amenable to numerical methods, while periodicity is not. Another interesting feature is that since it can be shown that random (unconstrained) dynamics has no forbidden patterns with probability one, their existence can be used as a fingerprint to identify any deterministic origin of orbit generation. This book is primarily addressed to researchers working in the field of nonlinear dynamics and complex systems, yet will also be suitable for graduate students interested in these subjects. The presentation is a compromise between mathematical rigor and pedagogical approach. Accordingly, some of the more mathematical background needed for more in depth understanding has been shifted into the appendices. 
650 0 |a Physics. 
650 0 |a Data structures (Computer science). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642040832 
830 0 |a Springer Series in Synergetics,  |x 0172-7389 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-04084-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)