Inductive Inference for Large Scale Text Classification Kernel Approaches and Techniques /

Text classification is becoming a crucial task to analysts in different areas. In the last few decades, the production of textual documents in digital form has increased exponentially. Their applications range from web pages to scientific documents, including emails, news and books. Despite the wide...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Silva, Catarina (Συγγραφέας), Ribeiro, Bernardete (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Studies in Computational Intelligence, 255
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03236nam a22005415i 4500
001 978-3-642-04533-2
003 DE-He213
005 20151204182201.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642045332  |9 978-3-642-04533-2 
024 7 |a 10.1007/978-3-642-04533-2  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Silva, Catarina.  |e author. 
245 1 0 |a Inductive Inference for Large Scale Text Classification  |h [electronic resource] :  |b Kernel Approaches and Techniques /  |c by Catarina Silva, Bernardete Ribeiro. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XX, 155 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 255 
505 0 |a Fundamentals -- Background on Text Classification -- Kernel Machines for Text Classification -- Approaches and techniques -- Enhancing SVMs for Text Classification -- Scaling RVMs for Text Classification -- Distributing Text Classification in Grid Environments -- Framework for Text Classification. 
520 |a Text classification is becoming a crucial task to analysts in different areas. In the last few decades, the production of textual documents in digital form has increased exponentially. Their applications range from web pages to scientific documents, including emails, news and books. Despite the widespread use of digital texts, handling them is inherently difficult - the large amount of data necessary to represent them and the subjectivity of classification complicate matters. This book gives a concise view on how to use kernel approaches for inductive inference in large scale text classification; it presents a series of new techniques to enhance, scale and distribute text classification tasks. It is not intended to be a comprehensive survey of the state-of-the-art of the whole field of text classification. Its purpose is less ambitious and more practical: to explain and illustrate some of the important methods used in this field, in particular kernel approaches and techniques. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Text processing (Computer science). 
650 0 |a Computational linguistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Document Preparation and Text Processing. 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Ribeiro, Bernardete.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642045325 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 255 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-04533-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)