Discovery Science 12th International Conference, DS 2009, Porto, Portugal, October 3-5, 2009 /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gama, João (Επιμελητής έκδοσης), Costa, Vítor Santos (Επιμελητής έκδοσης), Jorge, Alípio Mário (Επιμελητής έκδοσης), Brazdil, Pavel B. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Σειρά:Lecture Notes in Computer Science, 5808
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04953nam a22006015i 4500
001 978-3-642-04747-3
003 DE-He213
005 20170119072329.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642047473  |9 978-3-642-04747-3 
024 7 |a 10.1007/978-3-642-04747-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Discovery Science  |h [electronic resource] :  |b 12th International Conference, DS 2009, Porto, Portugal, October 3-5, 2009 /  |c edited by João Gama, Vítor Santos Costa, Alípio Mário Jorge, Pavel B. Brazdil. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 474 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5808 
505 0 |a Inference and Learning in Planning (Extended Abstract) -- Mining Heterogeneous Information Networks by Exploring the Power of Links -- Learning on the Web -- Learning and Domain Adaptation -- The Two Faces of Active Learning -- An Iterative Learning Algorithm for Within-Network Regression in the Transductive Setting -- Detecting New Kinds of Patient Safety Incidents -- Using Data Mining for Wine Quality Assessment -- MICCLLR: Multiple-Instance Learning Using Class Conditional Log Likelihood Ratio -- On the Complexity of Constraint-Based Theory Extraction -- Algorithm and Feature Selection for VegOut: A Vegetation Condition Prediction Tool -- Regression Trees from Data Streams with Drift Detection -- Mining Frequent Bipartite Episode from Event Sequences -- CHRONICLE: A Two-Stage Density-Based Clustering Algorithm for Dynamic Networks -- Learning Large Margin First Order Decision Lists for Multi-Class Classification -- Centrality Measures from Complex Networks in Active Learning -- Player Modeling for Intelligent Difficulty Adjustment -- Unsupervised Fuzzy Clustering for the Segmentation and Annotation of Upwelling Regions in Sea Surface Temperature Images -- Discovering the Structures of Open Source Programs from Their Developer Mailing Lists -- A Comparison of Community Detection Algorithms on Artificial Networks -- Towards an Ontology of Data Mining Investigations -- OMFP: An Approach for Online Mass Flow Prediction in CFB Boilers -- C-DenStream: Using Domain Knowledge on a Data Stream -- Discovering Influential Nodes for SIS Models in Social Networks -- An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules -- Precision and Recall for Regression -- Mining Local Correlation Patterns in Sets of Sequences -- Subspace Discovery for Promotion: A Cell Clustering Approach -- Contrasting Sequence Groups by Emerging Sequences -- A Sliding Window Algorithm for Relational Frequent Patterns Mining from Data Streams -- A Hybrid Collaborative Filtering System for Contextual Recommendations in Social Networks -- Linear Programming Boosting by Column and Row Generation -- Discovering Abstract Concepts to Aid Cross-Map Transfer for a Learning Agent -- A Dialectic Approach to Problem-Solving -- Gene Functional Annotation with Dynamic Hierarchical Classification Guided by Orthologs -- Stream Clustering of Growing Objects -- Finding the k-Most Abnormal Subgraphs from a Single Graph -- Latent Topic Extraction from Relational Table for Record Matching -- Computing a Comprehensible Model for Spam Filtering -- Better Decomposition Heuristics for the Maximum-Weight Connected Graph Problem Using Betweenness Centrality. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a User Interfaces and Human Computer Interaction. 
700 1 |a Gama, João.  |e editor. 
700 1 |a Costa, Vítor Santos.  |e editor. 
700 1 |a Jorge, Alípio Mário.  |e editor. 
700 1 |a Brazdil, Pavel B.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642047466 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5808 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-04747-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)