Data Mining in Crystallography

Humans have been “manually” extracting patterns from data for centuries, but the increasing volume of data in modern times has called for more automatic approaches. Early methods of identifying patterns in data include Bayes’ theorem (1700s) and Regression analysis (1800s). The proliferation, ubiqui...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Hofmann, D. W. M. (Επιμελητής έκδοσης), Kuleshova, Liudmila N. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Σειρά:Structure and Bonding, 134
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03490nam a22004815i 4500
001 978-3-642-04759-6
003 DE-He213
005 20161108071547.0
007 cr nn 008mamaa
008 110414s2010 gw | s |||| 0|eng d
020 |a 9783642047596  |9 978-3-642-04759-6 
024 7 |a 10.1007/978-3-642-04759-6  |2 doi 
040 |d GrThAP 
050 4 |a QD146-197 
072 7 |a PNK  |2 bicssc 
072 7 |a SCI013030  |2 bisacsh 
082 0 4 |a 546  |2 23 
245 1 0 |a Data Mining in Crystallography  |h [electronic resource] /  |c edited by D. W. M. Hofmann, Liudmila N. Kuleshova. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XIV, 172 p. 74 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Structure and Bonding,  |x 0081-5993 ;  |v 134 
505 0 |a An Introduction to Data Mining -- Data Mining in Organic Crystallography -- Data Mining for Protein Secondary Structure Prediction -- Data Mining and Inorganic Crystallography -- Data Bases, the Base for Data Mining. 
520 |a Humans have been “manually” extracting patterns from data for centuries, but the increasing volume of data in modern times has called for more automatic approaches. Early methods of identifying patterns in data include Bayes’ theorem (1700s) and Regression analysis (1800s). The proliferation, ubiquity and incre- ing power of computer technology has increased data collection and storage. As data sets have grown in size and complexity, direct hands-on data analysis has - creasingly been augmented with indirect, automatic data processing. Data mining has been developed as the tool for extracting hidden patterns from data, by using computing power and applying new techniques and methodologies for knowledge discovery. This has been aided by other discoveries in computer science, such as Neural networks, Clustering, Genetic algorithms (1950s), Decision trees (1960s) and Support vector machines (1980s). Data mining commonlyinvolves four classes of tasks: • Classi cation: Arranges the data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. • Clustering: Is like classi cation but the groups are not prede ned, so the algorithm will try to group similar items together. • Regression: Attempts to nd a function which models the data with the least error. A common method is to use Genetic Programming. • Association rule learning: Searches for relationships between variables. For example, a supermarket might gather data of what each customer buys. 
650 0 |a Chemistry. 
650 0 |a Inorganic chemistry. 
650 0 |a Proteins. 
650 1 4 |a Chemistry. 
650 2 4 |a Inorganic Chemistry. 
650 2 4 |a Crystallography and Scattering Methods. 
650 2 4 |a Protein Structure. 
700 1 |a Hofmann, D. W. M.  |e editor. 
700 1 |a Kuleshova, Liudmila N.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642047589 
830 0 |a Structure and Bonding,  |x 0081-5993 ;  |v 134 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-04759-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)