Partial Inner Product Spaces Theory and Applications /
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systema...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2009.
|
Σειρά: | Lecture Notes in Mathematics,
1986 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- General Theory: Algebraic Point of View
- General Theory: Topological Aspects
- Operators on PIP-Spaces and Indexed PIP-Spaces
- Examples of Indexed PIP-Spaces
- Refinements of PIP-Spaces
- Partial #x002A;-Algebras of Operators in a PIP-Space
- Applications in Mathematical Physics
- PIP-Spaces and Signal Processing.