Advances in Machine Learning I Dedicated to the Memory of Professor Ryszard S.Michalski /

This is the first volume of a large two-volume editorial project we wish to dedicate to the memory of the late Professor Ryszard S. Michalski who passed away in 2007. He was one of the fathers of machine learning, an exciting and relevant, both from the practical and theoretical points of view, area...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Koronacki, Jacek (Επιμελητής έκδοσης), Raś, Zbigniew W. (Επιμελητής έκδοσης), Wierzchoń, Sławomir T. (Επιμελητής έκδοσης), Kacprzyk, Janusz (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Studies in Computational Intelligence, 262
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introductory Chapters
  • Ryszard S. Michalski: The Vision and Evolution of Machine Learning
  • The AQ Methods for Concept Drift
  • Machine Learning Algorithms Inspired by the Work of Ryszard Spencer Michalski
  • Inductive Learning: A Combinatorial Optimization Approach
  • General Issues
  • From Active to Proactive Learning Methods
  • Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms
  • Transfer Learning via Advice Taking
  • Classification and Beyond
  • Determining the Best Classification Algorithm with Recourse to Sampling and Metalearning
  • Transductive Learning for Spatial Data Classification
  • Beyond Sequential Covering – Boosted Decision Rules
  • An Analysis of Relevance Vector Machine Regression
  • Cascade Classifiers for Hierarchical Decision Systems
  • Creating Rule Ensembles from Automatically-Evolved Rule Induction Algorithms
  • Structured Hidden Markov Model versus String Kernel Machines for Symbolic Sequence Classification
  • Soft Computing
  • Partition Measures for Data Mining
  • An Analysis of the FURIA Algorithm for Fuzzy Rule Induction
  • Increasing Incompleteness of Data Sets—A Strategy for Inducing Better Rule Sets
  • Knowledge Discovery Using Rough Set Theory
  • Machine Learning Techniques for Prostate Ultrasound Image Diagnosis
  • Segmentation of Breast Cancer Fine Needle Biopsy Cytological Images Using Fuzzy Clustering
  • Machine Learning for Robotics
  • Automatic Selection of Object Recognition Methods Using Reinforcement Learning
  • Comparison of Machine Learning for Autonomous Robot Discovery
  • Multistrategy Learning for Robot Behaviours
  • Neural Networks and Other Nature Inspired Approaches
  • Quo Vadis? Reliable and Practical Rule Extraction from Neural Networks
  • Learning and Evolution of Autonomous Adaptive Agents
  • Learning and Unlearning in Hopfield-Like Neural Network Performing Boolean Factor Analysis.