Zeta Functions over Zeros of Zeta Functions

The famous zeros of the Riemann zeta function and its generalizations (L-functions, Dedekind and Selberg zeta functions) are analyzed through several zeta functions built over those zeros. These ‘second-generation’ zeta functions have surprisingly many explicit, yet largely unnoticed properties, whi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Voros, André (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes of the Unione Matematica Italiana, 8
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02817nam a22004815i 4500
001 978-3-642-05203-3
003 DE-He213
005 20151111212511.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642052033  |9 978-3-642-05203-3 
024 7 |a 10.1007/978-3-642-05203-3  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Voros, André.  |e author. 
245 1 0 |a Zeta Functions over Zeros of Zeta Functions  |h [electronic resource] /  |c by André Voros. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XVII, 163 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 8 
505 0 |a Infinite Products and Zeta-Regularization -- The Riemann Zeta Function #x03B6;(): a Primer -- Riemann Zeros and Factorizations of the Zeta Function -- Superzeta Functions: an Overview -- Explicit Formulae -- The Family of the First Kind {#x2112; ( | )} -- The Family of the Second Kind -- The Family of the Third Kind -- Extension to Other Zeta- and -Functions -- Application: an Asymptotic Criterion for the Riemann Hypothesis. 
520 |a The famous zeros of the Riemann zeta function and its generalizations (L-functions, Dedekind and Selberg zeta functions) are analyzed through several zeta functions built over those zeros. These ‘second-generation’ zeta functions have surprisingly many explicit, yet largely unnoticed properties, which are surveyed here in an accessible and synthetic manner, and then compiled in numerous tables. No previous book has addressed this neglected topic in analytic number theory. Concretely, this handbook will help anyone faced with symmetric sums over zeros like Riemann’s. More generally, it aims at reviving the interest of number theorists and complex analysts toward those unfamiliar functions, on the 150th anniversary of Riemann’s work. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Functions of complex variables. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Approximations and Expansions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642052026 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 8 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-05203-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)