Zeta Functions over Zeros of Zeta Functions
The famous zeros of the Riemann zeta function and its generalizations (L-functions, Dedekind and Selberg zeta functions) are analyzed through several zeta functions built over those zeros. These ‘second-generation’ zeta functions have surprisingly many explicit, yet largely unnoticed properties, whi...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2010.
|
Σειρά: | Lecture Notes of the Unione Matematica Italiana,
8 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Infinite Products and Zeta-Regularization
- The Riemann Zeta Function #x03B6;(): a Primer
- Riemann Zeros and Factorizations of the Zeta Function
- Superzeta Functions: an Overview
- Explicit Formulae
- The Family of the First Kind {#x2112; ( | )}
- The Family of the Second Kind
- The Family of the Third Kind
- Extension to Other Zeta- and -Functions
- Application: an Asymptotic Criterion for the Riemann Hypothesis.