Option Prices as Probabilities A New Look at Generalized Black-Scholes Formulae /

The Black-Scholes formula plays a central role in Mathematical Finance; it gives the right price at which buyer and seller can agree with, in the geometric Brownian framework, when strike K and maturity T are given. This yields an explicit well-known formula, obtained by Black and Scholes in 1973. T...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Profeta, Cristophe (Συγγραφέας), Roynette, Bernard (Συγγραφέας), Yor, Marc (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Springer Finance
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03038nam a22005055i 4500
001 978-3-642-10395-7
003 DE-He213
005 20151204181831.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642103957  |9 978-3-642-10395-7 
024 7 |a 10.1007/978-3-642-10395-7  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Profeta, Cristophe.  |e author. 
245 1 0 |a Option Prices as Probabilities  |h [electronic resource] :  |b A New Look at Generalized Black-Scholes Formulae /  |c by Cristophe Profeta, Bernard Roynette, Marc Yor. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XXI, 270 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Finance 
505 0 |a Reading the Black-Scholes Formula in Terms of First and Last Passage Times -- Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times -- Representation of some particular Azéma supermartingales -- An Interesting Family of Black-Scholes Perpetuities -- Study of Last Passage Times up to a Finite Horizon -- Put Option as Joint Distribution Function in Strike and Maturity -- Existence and Properties of Pseudo-Inverses for Bessel and Related Processes -- Existence of Pseudo-Inverses for Diffusions. 
520 |a The Black-Scholes formula plays a central role in Mathematical Finance; it gives the right price at which buyer and seller can agree with, in the geometric Brownian framework, when strike K and maturity T are given. This yields an explicit well-known formula, obtained by Black and Scholes in 1973. The present volume gives another representation of this formula in terms of Brownian last passages times, which, to our knowledge, has never been made in this sense. The volume is devoted to various extensions and discussions of features and quantities stemming from the last passages times representation in the Brownian case such as: past-future martingales, last passage times up to a finite horizon, pseudo-inverses of processes... They are developed in eight chapters, with complements, appendices and exercises. 
650 0 |a Mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantitative Finance. 
700 1 |a Roynette, Bernard.  |e author. 
700 1 |a Yor, Marc.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642103940 
830 0 |a Springer Finance 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-10395-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)