Option Prices as Probabilities A New Look at Generalized Black-Scholes Formulae /
The Black-Scholes formula plays a central role in Mathematical Finance; it gives the right price at which buyer and seller can agree with, in the geometric Brownian framework, when strike K and maturity T are given. This yields an explicit well-known formula, obtained by Black and Scholes in 1973. T...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2010.
|
Σειρά: | Springer Finance
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Reading the Black-Scholes Formula in Terms of First and Last Passage Times
- Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times
- Representation of some particular Azéma supermartingales
- An Interesting Family of Black-Scholes Perpetuities
- Study of Last Passage Times up to a Finite Horizon
- Put Option as Joint Distribution Function in Strike and Maturity
- Existence and Properties of Pseudo-Inverses for Bessel and Related Processes
- Existence of Pseudo-Inverses for Diffusions.