Theory of Electron Transport in Semiconductors A Pathway from Elementary Physics to Nonequilibrium Green Functions /
This book describes in details the theory of the electron transport in the materials and structures at the basis of modern micro- and nano-electronics. It leads and accompanies the reader, through a step-by-step derivation of all calculations, from the basic laws of classical and quantum physics up...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2010.
|
Σειρά: | Springer Series in Solid-State Sciences,
165 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Basic concepts in semiconductor physics
- Survey of Classical Physics
- Fundamentals of Quantum Mechanics
- Fundamentals of Statistical Physics
- Crystal Structures
- Phonons
- Bloch States and Band Theory
- Effective-Mass Theorems, Envelope Function, and Semiclassical Dynamics
- Semiconductors
- Semiclassical transport in bulk semiconductors
- Electronic Interactions
- Boltzmann Equation
- Linear Transport
- Diffusion, Fluctuations, and Noise
- Nonlinear Transport
- Monte Carlo Simulation of Bulk Electron Transport
- Bulk Transport Properties of Main Semiconductors
- Quantum transport in bulk semiconductors
- Quantum Transport in Homogeneous Systems
- The Wigner-Function Approach to Quantum Transport
- Transport in semiconductor structures
- Inhomogeneous and Open Systems: Electronic Devices
- Low-Dimensional Structures
- Carbon Nanotubes
- Coherent Transport in Mesoscopic Structures
- Semiconductor Photo Gallery
- Quantum transport with non-equilibrium Green functions
- Second-Quantization Formalism
- to Green Functions
- Wick–Matsubara Theorems
- Perturbation Expansion of Green Functions: Feynman Diagrams and Dyson Equation
- Nonequilibrium Green Functions Applied to Transport: Quantum Boltzmann Equation
- NonEquilibrium Green Functions Applied to Transport: Mesoscopic Systems
- Appendices
- Vector Spaces and Fourier Analysis
- One-Dimensional Potential Step, Barrier, and Well
- Quantum Theory of Harmonic Oscillator
- Landau Levels
- Perturbation Theory.