Introduction to Complex Reflection Groups and Their Braid Groups

Weyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GLr(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra. It has recently been discovered that complex reflection groups play a key role in the theory...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Broué, Michel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Mathematics, 1988
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03071nam a22005415i 4500
001 978-3-642-11175-4
003 DE-He213
005 20151204153903.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642111754  |9 978-3-642-11175-4 
024 7 |a 10.1007/978-3-642-11175-4  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Broué, Michel.  |e author. 
245 1 0 |a Introduction to Complex Reflection Groups and Their Braid Groups  |h [electronic resource] /  |c by Michel Broué. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XII, 144 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1988 
505 0 |a Preliminaries -- Prerequisites and Complements in Commutative Algebra -- Polynomial Invariants of Finite Linear Groups -- Finite Reflection Groups in Characteristic Zero -- Eigenspaces and Regular Elements. 
520 |a Weyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GLr(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra. It has recently been discovered that complex reflection groups play a key role in the theory of finite reductive groups, giving rise as they do to braid groups and generalized Hecke algebras which govern the representation theory of finite reductive groups. It is now also broadly agreed upon that many of the known properties of Weyl groups can be generalized to complex reflection groups. The purpose of this work is to present a fairly extensive treatment of many basic properties of complex reflection groups (characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, etc.) including the basic findings of Springer theory on eigenspaces. In doing so, we also introduce basic definitions and properties of the associated braid groups, as well as a quick introduction to Bessis' lifting of Springer theory to braid groups. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642111747 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1988 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-11175-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)