Minimal Surfaces

Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended vers...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dierkes, Ulrich (Συγγραφέας), Hildebrandt, Stefan (Συγγραφέας), Sauvigny, Friedrich (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 339
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04988nam a22006015i 4500
001 978-3-642-11698-8
003 DE-He213
005 20151204153454.0
007 cr nn 008mamaa
008 100825s2010 gw | s |||| 0|eng d
020 |a 9783642116988  |9 978-3-642-11698-8 
024 7 |a 10.1007/978-3-642-11698-8  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Dierkes, Ulrich.  |e author. 
245 1 0 |a Minimal Surfaces  |h [electronic resource] /  |c by Ulrich Dierkes, Stefan Hildebrandt, Friedrich Sauvigny. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XVI, 692 p. 149 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 339 
505 0 |a to the Geometry of Surfaces and to Minimal Surfaces -- Differential Geometry of Surfaces in Three-Dimensional Euclidean Space -- Minimal Surfaces -- Representation Formulas and Examples of Minimal Surfaces -- Plateau's Problem -- The Plateau Problem and the Partially Free Boundary Problem -- Stable Minimal- and H-Surfaces -- Unstable Minimal Surfaces -- Graphs with Prescribed Mean Curvature -- to the Douglas Problem -- Problems. 
520 |a Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling´s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau´s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche´s uniqueness theorem and Tomi´s finiteness result. In addition, a theory of unstable solutions of Plateau´s problems is developed which is based on Courant´s mountain pass lemma. Furthermore, Dirichlet´s problem for nonparametric H-surfaces is solved, using the solution of Plateau´s problem for H-surfaces and the pertinent estimates. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 0 |a Calculus of variations. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Hildebrandt, Stefan.  |e author. 
700 1 |a Sauvigny, Friedrich.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642116971 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 339 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-11698-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)