Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction
This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic...
Κύριος συγγραφέας: | Parmeggiani, Alberto (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2010.
|
Σειρά: | Lecture Notes in Mathematics,
1992 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction
ανά: Parmeggiani, Alberto
Έκδοση: (2010) -
Quantization, PDEs, and Geometry The Interplay of Analysis and Mathematical Physics /
Έκδοση: (2016) -
The Ricci Flow in Riemannian Geometry A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem /
ανά: Andrews, Ben, κ.ά.
Έκδοση: (2011) -
Concentration Analysis and Applications to PDE ICTS Workshop, Bangalore, January 2012 /
Έκδοση: (2013) -
Covariant Schrödinger Semigroups on Riemannian Manifolds
ανά: Güneysu, Batu
Έκδοση: (2017)