Simulating Complex Systems by Cellular Automata

Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kroc, Jiri (Επιμελητής έκδοσης), Sloot, Peter M.A (Επιμελητής έκδοσης), Hoekstra, Alfons G. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04482nam a22005415i 4500
001 978-3-642-12203-3
003 DE-He213
005 20151116134758.0
007 cr nn 008mamaa
008 140509s2010 gw | s |||| 0|eng d
020 |a 9783642122033  |9 978-3-642-12203-3 
024 7 |a 10.1007/978-3-642-12203-3  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.C65 
072 7 |a UGK  |2 bicssc 
072 7 |a COM072000  |2 bisacsh 
082 0 4 |a 003.3  |2 23 
245 1 0 |a Simulating Complex Systems by Cellular Automata  |h [electronic resource] /  |c edited by Jiri Kroc, Peter M.A. Sloot, Alfons G. Hoekstra. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XXII, 384 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a to Modeling of Complex Systems Using Cellular Automata -- Theory of Cellular Automata -- Multilevel Cellular Automata as a Tool for Studying Bioinformatic Processes -- Complex Automata: Multi-scale Modeling with Coupled Cellular Automata -- Hierarchical Cellular Automata Methods -- Cellular Automata Composition Techniques for Spatial Dynamics Simulation -- Problem Solving on One-Bit-Communication Cellular Automata -- Minimal Cellular Automaton Model of Inter-species Interactions: Phenomenology, Complexity and Interpretations -- Cellular Evolutionary Algorithms -- Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces -- Applications of Cellular Automata -- Game Theoretical Interactions of Moving Agents -- Lattice Boltzmann Simulations of Wetting and Drop Dynamics -- CA Modeling of Ant-Traffic on Trails -- Lattice-Gas Cellular Automaton Modeling of Emergent Behavior in Interacting Cell Populations -- Cellular Automata for Simultaneous Analysis and Optimal Structural Topology Design -- Cellular Automata Software -- Parallel Cellular Programming for Emergent Computation. 
520 |a Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on theory and applications, and a smaller part on software. The theory part contains fundamental chapters on how to design and/or apply CA for many different areas. In the applications part a number of representative examples of really using CA in a broad range of disciplines is provided - this part will give the reader a good idea of the real strength of this kind of modeling as well as the incentive to apply CA in their own field of study. 
650 0 |a Computer science. 
650 0 |a Computer simulation. 
650 0 |a Computer mathematics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Computational Intelligence. 
700 1 |a Kroc, Jiri.  |e editor. 
700 1 |a Sloot, Peter M.A.  |e editor. 
700 1 |a Hoekstra, Alfons G.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642122026 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-12203-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)