Regularity and Approximability of Electronic Wave Functions

The electronic Schrödinger equation describes the motion of N-electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, with three spatial dimensions for each electron. Approximating these solutions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Yserentant, Harry (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Mathematics, 2000
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03204nam a22004935i 4500
001 978-3-642-12248-4
003 DE-He213
005 20151123193354.0
007 cr nn 008mamaa
008 100528s2010 gw | s |||| 0|eng d
020 |a 9783642122484  |9 978-3-642-12248-4 
024 7 |a 10.1007/978-3-642-12248-4  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Yserentant, Harry.  |e author. 
245 1 0 |a Regularity and Approximability of Electronic Wave Functions  |h [electronic resource] /  |c by Harry Yserentant. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a VIII, 188 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2000 
505 0 |a and Outline -- Fourier Analysis -- The Basics of Quantum Mechanics -- The Electronic Schrödinger Equation -- Spectrum and Exponential Decay -- Existence and Decay of Mixed Derivatives -- Eigenfunction Expansions -- Convergence Rates and Complexity Bounds -- The Radial-Angular Decomposition. 
520 |a The electronic Schrödinger equation describes the motion of N-electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, with three spatial dimensions for each electron. Approximating these solutions is thus inordinately challenging, and it is generally believed that a reduction to simplified models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to show readers that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The text is accessible to a mathematical audience at the beginning graduate level as well as to physicists and theoretical chemists with a comparable mathematical background and requires no deeper knowledge of the theory of partial differential equations, functional analysis, or quantum theory. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642122477 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2000 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-12248-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)