Nonlinear Dynamics Between Linear and Impact Limits /

Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of “unusual” physical phenomena by means of nonlinear differential equations, discrete mappings, and related mathematical algorithms. However, with no real substitute for the linear superposition principle...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pilipchuk, Valery N. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Applied and Computational Mechanics, 52
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03754nam a22005415i 4500
001 978-3-642-12799-1
003 DE-He213
005 20151204153451.0
007 cr nn 008mamaa
008 100509s2010 gw | s |||| 0|eng d
020 |a 9783642127991  |9 978-3-642-12799-1 
024 7 |a 10.1007/978-3-642-12799-1  |2 doi 
040 |d GrThAP 
050 4 |a QC120-168.85 
050 4 |a QA808.2 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 531  |2 23 
100 1 |a Pilipchuk, Valery N.  |e author. 
245 1 0 |a Nonlinear Dynamics  |h [electronic resource] :  |b Between Linear and Impact Limits /  |c by Valery N. Pilipchuk. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a 360 p. 116 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 52 
505 0 |a Smooth Oscillating Processes -- Nonsmooth Processes as Asymptotic Limits -- Nonsmooth Temporal Transformations (NSTT) -- Sawtooth Power Series -- NSTT for Linear and Piecewise-Linear Systems -- Periodic and Transient Nonlinear Dynamics under Discontinuous Loading -- Strongly Nonlinear Vibrations -- Strongly Nonlinear Waves -- Impact Modes and Parameter Variations -- Principal Trajectories of Forced Vibrations -- NSTT and Shooting Method for Periodic Motions -- Essentially Non-periodic Processes -- Spatially-Oscillating Structures. 
520 |a Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of “unusual” physical phenomena by means of nonlinear differential equations, discrete mappings, and related mathematical algorithms. However, with no real substitute for the linear superposition principle, the methods of Nonlinear Dynamics appeared to be very diverse, individual and technically complicated. This book makes an attempt to find a common ground for nonlinear dynamic analyses based on the existence of strongly nonlinear but quite simple counterparts to the linear models and tools. It is shown that, since the subgroup of rotations, harmonic oscillators, and the conventional complex analysis generate linear and weakly nonlinear approaches, then translations and reflections, impact oscillators, and hyperbolic (Clifford’s) algebras must give rise to some “quasi impact” methodology. Such strongly nonlinear methods are developed in several chapters of this book based on the idea of non-smooth time substitutions. Although most of the illustrations are based on mechanical oscillators, the area of applications may include also electric, electro-mechanical, electrochemical and other physical models generating strongly anharmonic temporal signals or spatial distributions. Possible applications to periodic elastic structures with non-smooth or discontinuous characteristics are outlined in the final chapter of the book. 
650 0 |a Physics. 
650 0 |a Mechanics. 
650 0 |a Engineering. 
650 0 |a Complexity, Computational. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Physics. 
650 2 4 |a Mechanics. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Engineering, general. 
650 2 4 |a Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642127984 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 52 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-12799-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)